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ABSTRACT 

We formulate tempo tracking in a Bayesian framework 
where a tempo tracker is modeled as a stochastic dynamical 
system. The tempo is modeled as a hidden state variable of 
the system and is estimated by a Kalmanfilter. The Kalman 
filter operates on a Tempogram, a wavelet-like multiscale 
expansion of a real performance. An important advantage 
of our approach is that it is possible to formulate both off- 
line or real-time algorithms. The simulation results on a 
systematically collected set of MIDI piano performances of 
Yesterday and Michelle by the Beatles shows accurate 
tracking of approximately 90% of the beats. 

1 INTRODUCTION 

An important and interesting subtask in automatic 
music transcription is tempo tracking: how to follow 
the tempo in a performance that contains expressive 
timing and tempo variations. When these tempo 
fluctuations are correctly identified it becomes much 
easier to separate the continuous expressive timing 
from the discrete note categories (i.e., quantization). 

The sense of tempo seems to be carried by the beats 
and thus tempo tracking is related to the study of beat 
induction, the perception of beats or pulse while 
listening to music (see Desain & Honing, 1994). 
However, it is still unclear what precisely constitutes 
tempo and how it relates to the perception of rhyth- 
mical structure. Tempo is a perceptual construct and 
cannot directly be measured in a performance. 

There is a significant body of research on the 
psychological and computational modeling aspects 
of tempo tracking. Early work by Michon (1967) 
describes a systematic study on the modeling of 
human behavior in tracking tempo fluctuations in 
artificially constructed stimuli. Longuet-Higgins 
(1976) proposes a musical parser that produces a 
metrical interpretation of performed music while 
tracking tempo changes. Knowledge about meter 
helps the tempo tracker to quantize a performance. 

Desain and Honing (1991) describe a connectionist 
model of quantization; a relaxation network based on 
the principle of steering adjacent time intervals 
towards integer multiples. Here as well, a tempo 
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tracker helps to arrive at a correct rhythmical inter- 
pretation of a performance. Both models, however, 
have not been systematically tested on empirical 
data. Still, quantizers can play a important role in 
addressing the difficult problem of what is a correct 
tempo interpretation by defining it as the one that 
results in a simpler quantization (Cemgil et al., 2000). 

Large and Jones (1999) describe an empirical study 
on tempo tracking, interpreting the observed human 
behavior in terms of an oscillator model. A peculiar 
characteristic of this model is that it is insensitive 
(or becomes so after enough evidence is gathered) 
to material in between expected beats, suggesting 
that the perception tempo change is indifferent 
to events in this interval. Toiviainen (1999) discusses 
some problems regarding phase adaptation. 

Another class of models make use of prior know- 
ledge in the form of an annotated score (Dannenberg, 
1984; Vercoe, 1984; Vercoe & Puckette, 1985). They 
match the known score to incoming performance 
data. Vercoe and Puckette (1985) uses a statistical 
learning algorithm to train the system with multiple 
performances. Even with this information at hand 
tempo tracking stays a non-trivial problem. 

More recently attempts are made to deal directly 
with the audio signal (Goto & Muraoka, 1998; 
Scheirer, 1998) without using any prior knowledge. 
However, these models assume constant tempo 
(albeit timing fluctuations may be present), so are in 
fact not tempo trackers but be at trackers. Although 
successfid for music with a steady beat (e.g., popular 
music), they report problems with syncopated data 
(e.g., reggae or jazz music). 

All tempo track models assume an initial tempo (or 
beat length) to be known to start up the tempo track- 
ing process (e.g., Longuet-Higgins, 1976; Large & 
Jones, 1999). There is few research addressing how 
to arrive at a reasonable first estimate. Longuet- 
Higgins and Lee (1982) propose a model based on 
score data, Scheirer (1998) one for audio data. A 
complete model should incorporate both aspects. 

In this paper we formulate a tempo tracking in 
a probabilistic framework where a tempo tracker is 
modeled as a stochastic dynamical system. The tempo 
is modeled as a hidden state variable of the system 
and is estimated by Kalman filtering. The Kalman 
filter operates on a multiscale representation of a 
real performance which we call aTempogram. In this 

respect the tempogram is analogous to a wavelet 
transform (Rioul & Vetterli, 1991). In the context of 
tempo tracking, wavelet analysis and related tech- 
niques are already investigated by various researchers 
(Smith, 1999;Todd, 1994). A similar comb filter basis is 
used by Scheirer (1998).The tempogram is also related 
to the periodicity transform proposed by Sethares and 
Staley (1999), but uses a time localized basis. Kalman 
filters are already applied in the music domain such as 
polyphonic pitch tracking (Sterian, 1999) and audio 
restoration (Godsill & Rayner, 1998). From the mod- 
eling point of view, the framework discussed in this 
paper has also some resemblance to the work of 
Sterian (1999), who views transcription as a model 
based segmentation of a time-frequency image. 

The outline of the paper is as follows: We first 
consider the problem of tapping along a "noisy" 
metronome and introduce the Kalman filter and its 
extensions. Subsequently, we introduce the Tempo- 
gram representation to extract beats from perfor- 
mances and discuss the probabilistic interpretation. 
Consequently, we discuss parameter estimation issues 
from data. Finally we report simulation results of the 
system on a systematically collected dataset, solo 
piano performances of two Beatles songs, Yesterday 
and Michelle. 

2 DYNAMICAL SYSTEMS AND 
THE KALMAN FILTER 

Mathematically, a dynamical system is characterized 
by a set of state variables and a set of state transition 
equations that describe how state variables evolve 
with time. For example, a perfect metronome can be 
described as a dynamical system with two state vari- 
ables: a beat .i and a period i\. Given the values of 
state variables at j - l'th step as 5-1 and Aj-l, the 
next beat occurs at 7j. = + Aj-1. The period of a 
perfect metronome is constant so Aj = By 
using vector notation and by letting sj = [7j.,AjlT we 
can write a linear state transition model as 

When the initial state so = [To, LolT is given, the 
system is hlly specified. For example if the metronom 
clicks at a tempo 60 beats per minute (Ao = 1 sec.) 
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and first click occurs at time % = 0 sec., next beats 
occur at = 1, T2 = 2 2.t.c. Since the metronom is 
perfect the period stays constant. 

Such a deterministic model is not realistic for 
natural music performance and can not be used for 
tracking the tempo in presence of tempo fluctuations 
and expressive timing deviations. Tempo fluctuations 
may be modeled by introducing a noise term that 
"corrupts" the state vector 

where v is a Gaussian random vector with mean 0 
and diagonal covariance matrix Q, i.e. v - N(0,Q)'. 
The tempo will drift from the initial tempo quickly 
if the variance of v is large. On the other hand when 
Q --+ 0, we have the constant tempo case. 

In a music performance, the actual beat -2 and 
the period A can not be observed directly. By actual 
beat we refer to the beat iterpretation that coincides 
with human perception when listening to music. For 
example, suppose, an expert drummer is tapping 
along a performance at the beat level and we assume 
her beats as the correct tempo track. If the task would 
be repeated on the same piece, we would observe 
each time a slightly different tempo track. As an 
alternative, suppose we would know the score of 
the performance and identi& onsets that coincide with 
the beat. However, due to small scale expressive timing 
deviations, these onsets will be also noisy, i.e. we can at 
best observe "noisy" versions of actual beats. We will 
denote this noisy beat by r in contrast to the actual but 
unobservable beat +. Mathematically we have 

7.  - +. 
J - J + W J  (3) 

where wj - N(0, R). Here, 9 is the beat at step j that 
we get from a (noisy) observation process. In this 
formulation, tempo tracking corresponds to the 
estimation of hidden variables 7;. given observations 
upto j'th step. We note that in a "blind tempo track- 
ing task, i.e. when the score is not known, the (noisy) 
beat 7j can not be directly observed since there is no 
expert drummer who is tapping along, neither a score 
to guide us. The noisy-beat itself has to be induced 

from events in the music. In the next section we will 
present a technique to estimate both a noisy beat q as 
well a noisy period Aj from a real performance. 

Equations 2 and 3 define a linear dynamical system, 
because all noises are assumed to be Gaussian and all 
relationships between variables are linear. Hence, all 
state vectors sj have Gaussian distributions. A Gaus- 
sian distribution is hlly characterized by its mean 
and covariance matrix and in the context of linear 
dynamical systems, these quantities can be estimated 
very efficiently by a Kalman filter (Kalman, 1960; 
Roweis & Ghahramani, 1999). The operation of 
the filter is illustrated in Figure 1. 

2.1 Extensions 
The basic model can be extended in several direc- 
tions. First, the linearity constraint on the Kalman 
filter can be relaxed. Indeed, in tempo tracking such 
an extension is necessary to ensure that the period A 
is always positive. Therefore we define the state 
transition model in a warped space defined by the 
mapping w = log, A. This warping also ensures the 
perceptually more plausible assumption that tempo 
changes are relative rather than absolute. For example, 
under this warping, a deceleration from A -+ 2A has 
the same likelihood as an acceleration from A + A 12. 

The state space sj can be extended with additional 
dynamic variables iij. Such additional variables store 
information about the past states (e.g. in terms of 
acceleration e.t.c.) and introduce inertia to the system. 
Inertia reduces the random walk behavior in the state 
space and renders smoothstate trajectories morelikely. 
Moreover, this can result in more accurate predictions. 

The observation noise wj can be modeled as a 
mixture of gaussians. This choice has the following 
rationale: To follow tempo fluctuations the observa- 
tion noise variance R should not be too "broad. A 
broad noise covariance indicates that observations 
are not very reliable, so they have less effect to the 
state estimates. In the extreme case when R -. oo, all 
observations are practically missing so the observa- 
tions have no effect on state estimates. On the other 

' A random vector x is said to be Gaussian with mean p and covariance matrix P if it has the probability density 

In this case we write x - N(p, P) 
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Fig. 1. Operation of the Kalman Filter and Smoother. The system is give? by Equations 2 and 3. In each subfigure, 
the above coordinate system represents the hidden state space [i,AIT and the below coordinate system rep- 
resent the observable space r.In the hidden space, the x and y axes represent the phase .i period A of the tracker. 
The ellipse and its center correspond to the covariance and the mean of the hidden state estimatep(sjlrl . . . rk) = 
N(pjlk, Pjk) where pjlk and Pjlk denote the estimated mean and covariance given observations TI . . . 7.. In the 
observable space, the vertical axis represents the predictive probability di~tributionp(7j.(q-~ . . . rl). 
(a) The algorithm starts with the initial state estimate N(p lo ,  Pllo). In presence of no evidence this state esti- 

mate gives rise to a prediction in the observable T space, 
(b) The beat is observed at rl ,The state is updated to N(p l1 ,  PlI1) according to the new evidence. Note that the 

uncertainty "shrinksy', 
(c) On the basis of current state a new predictionN(p2p, P211) is made, 
(d) Steps are repeated until all evidence is processed to obtain filtered estimates N(pjk, Pjli), j = 1 . . . N. In this 

case N = 3. 
(e) Filtered estimates are updated by backtracking to obtain smoothed estimates N(pilNy PilN) (Kalman 

smoothing). 

hand, a narrow R makes the filter sensitive to outliers p(wj) = Ccj p(cj)p(wj lcj). In Figure 2 we compare a 
since the same noise covariance is used regardless of switching Kalman filter and a standard Kalman filter. 
the distance of an observation from its prediction. A switchvariable makes a system more robust against 
Outliers can be explicitely modeled by using a mix- outliers and consequently more realistic state estimates 
ture of Gaussians, for example one "narrow" Gaus- can be obtained. For a review of more general classes 
sian for normal operation, and one "broad Gaussian of switching Kalman filters, see Murphy (1998). 
for outliers. Such a switching mechanism can be To summarize, the dynamical model of the tempo 
implemented by using a discrete variable cj which tracker is given by 
indicates whether the j'th observation is an outlier or +. I - - 7. ''-1 + 2"j-I 

not. In other words we use a different noise covari- 
(4) 

ance depending upon the value ofcj. Mathematically, (8) =A("') + v j  aj- 1 
( 5 )  

we write this statement as wjlcj N N(0, Rc). Since cj 
can not be observed, we define a prior probability 
cj -- p(c) and sum over all possible settings of cj, i.e. 

(l,) = (i) +wj (6) 
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Fig. 2. Comparison of a standard Kalman filter with a switching Kalman filter. 
(a) Based on the state estimate N(p2I2, P212) the next state is predicted as N(p312, P3[2). When propagated 

through the measurement model, we obtainp(~3  IT^, q), which is a mixture of Gaussians where the mixing 
coefficients are given by p(c), 

(b) The observation 7-3 is way off the mean of the prediction, i.e. it is highly likely an outlier. Only the broad 
Gaussian is active, which reflects the fact that the observations are expected to be very noisy. Consequently, 
the updated state estimate N(p3I3, P3\3) is not much different than its p r e d i c t i ~ n N ( p ~ ~ ~ ,  P3\3). However, the 
uncertainty in the next prediction N(p413, Pq3) will be higher, 

(c) After all observations are obtained, the smoothed estimates N(pj14, Pj14) are obtained. The estimated state 
trajectory shows that the observation 7-3 is correctly interpreted as an outlier. 

(d) In contrast to the switching Kalman filter, the ordinary Kalman filter is sensitive against outliers. In contrast 
to (b), the updated state estimate N(p33,  P3I3) is way off the prediction. 

(e) Consequently a very "jumpy" state trajectory is estimated. This is simply due to the fact that the observation 
model does not account for presence of outliers. 

where vj - N(0, Q), wjlcj -- N(0, R,) and cj - p(cj). onsets. For example, a syncopated rhythm induces 
We take cj as a binary discrete switch variable. Note beats which do not neccesarly coincide with an on set. 
that, in Eq. 6 the observable space is two dimensional In this section, we will define a probability 
(includes both r and w), in contrast to one dimen- distribution which assigns probability masses to all 
sional observable r in Figure 2. possible beat interpretations given a performance. 

The Bayesian formulation of this problem is 

3 TEMPOGRAM REPRESENTATION 
~ ( 7 7  ~ k )  O= ~(t17-7 W ) P ~  W) (7) 

where t is an onset list. In this context, a beat 
In the previous section, we have assumed that the beat interpretation is the tuple T (local beat) and w (local 
7 j  is observed at each step j. In a real musical situation, log-period). 
however, the beat can not be observed directly from The first termp(tIr, w) in Eq. 7 is the probability of 
performance data. The sensation of a beat emerges the onset list t given the tempo track. Since t is actu- 
from a collection of events rather than, say, single ally observed, p(tIr, w) is a hnction of r and w and is 
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thus called the likelihood of T and w. The second term 
P(T, W) in Eq. 7 is theprior distribution. The prior can 
be viewed as a hnction which weights the likelihood 
on the (7, W) space. It is reasonable to assume that the 
likelihood p(t17, w) is high when onsets [ti] in the 
performance coincide with the beats of the tempo 
track. To construct a likelihood hnction having this 
property we propose a similarity measure between 
the performance and a local constant tempo track. 
First we define a continuous time signal x(t) = 

~ f = ,  G(t - ti) where we take G(t) = exp (-t2 / 2 4 ) ,  a 
Gaussian hnction with variance a:. We represent a 
local tempo track as a pulse train $(t; T, w) = 

00 C,=_, a,S(t - T - 1 ~ 2 2 ~ )  where S(t - to) is a Dirac 
delta hnction, which represents an impulse located 
at to. The coefficients a, are positive constants such 
that Em a, is a constant. (See Fig. 3). In real-time 
applications, where causal analysis is desirable, a, 
can be set to zero for m > 0. When a, is a seq- 
uence of form a, = am,  where 0 < a < 1, one has 
the infinite impulse response (IIR) comb filters used 
by Scheirer (1998) which we adopt here. We define the 
tempogram ofx(t)at each (T, w) as the inner product 

The tempogram representation can be interpreted as 
the response of a comb filter bank and is analogous to 
a multiscale representation (e.g., the wavelet trans- 
form), where T and w correspond to transition and 
scaling parameters (Rioul and Vetterli, 1991; Kron- 
land-Martinet, 1988). 

The tempogram parameters have simple inter- 
pretations. The filter coefficient a adjust the time 
locality of basis hnctions. When a + 1, basis hnc-  
tions $ extend to infinity and locality is lost. For 
a + 0 the basis degenerates to a single Dirac pulse 
and the tempogram is effectively equal to x(t) for all w 
and thus gives no information about the local period. 

The variance parameter a, corresponds to the 
amount of small scale expressive deviation in an 
onsets timing. If a, would be large, the tempogram 
gets "smeared-out" and all beat interpretations 
become almost equally likely. When a, + 0, we get a 
very "spiky" tempogram, where most beat inter- 
pretations have zero probability 

In Figure 4 we show a tempogram obtained from a 
simple onset sequence. We define the likelihood as 
p(t 17, W) K exp (T~,(T, w)). When combined with the 
prior, the tempogram gives an estimate of likely beat 
interpretations (T, w). 

Fig. 3. Tempogram Calculation. The continuous signal x(t) is obtained from the onset list by convolution with a 
Gaussian function. Below, three different basis functions $ are shown. All are localized at the same T and different w. The 
tempogram at (7, w)  is calculated by taking the inner product of x(t) and $(t; T, w). Due to the sparse nature of the basis 
functions, the inner product operation can be implemented very efficiently. 
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Fig. 4. A simple rhythm and its Tempogram. x and y axes correspond to T and w respectively. The bottom figure shows 
the onset sequence (triangles). Assuming flat priors on T and w, the curve along the w axis is the marginal p(w1t) x 

d r  exp(Tgx(T, w)). We note thatp(w1 t) has peaks at w, which correspond to quarter, eight and sixteenth note level as well 
as dotted quarter and half note levels of the original notation. This distribution can be used to estimate a reasonable initial state. 

4 MODELTRAINING 

In this section, we review the techniques for para- 
meter estimation. First, we summarize the relation- 
ships among variables by using a a graphical model. 
A graphical model is a directed acyclic graph, where 
nodes represent variables and missing directed links 
represent conditional independence relations. The 
distributions that we have specified so far are sum- 
marized in Table 1. 

Table 1. Summary of conditional distributions and their 
parameters. 

The resulting graphical model is shown in Figure 
5. For example, the graphical model has a directed 
link from sj to sj+l to encode p ( ~ ~ + ~  Isj). Other links 
towards sj+l are missing. 

In principle, we could jointly optimize all model 
parameters. However, such an approach would be 
computationally very intensive. Instead, at the 
expense of getting a suboptimal solution, we will 
assume that we observe the noisy tempo track 7. This 
observation effectively "decouples" the model into two 
parts (See Fig. 5), (1) The Kalman Filter (State trans- 
ition model and Observation (Switch) model) and (2) 
Tempogram.We will train each part separately 

Model Distribution Parameters 4.1 Estimation of zj from performance data 
State Transition (Eq. 5) p ( ~ j + ~  Isj) A, Q In our studies, a score is always available, so we 
(Switching) p(q, wj(sj, cj) Rc extract 9 from a performance t by matching the notes 

Observation (Eq. 6) that coincide with the beat (quarter note) level and 
Switch prior (Eq. 6) ~ ( c j )  PC 
Tempogram (Eq. 8) the bar (whole note). If there are more than one note 

p(tl7j.2 wj) OX, a 
on a beat, we take the median of the onset times2 

The scores do not have on each beat. We interpolate missing beats by using a switching Kalman filter with parameters 
Q = diag([0.012, 0.05~]), R1 = 0.012, R2 = 0.3~,  A = 1 and p(c) = [0.999, 0.0011. 



ALI TAYLAN CEMGIL ET AL. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Fig. 5. The Graphical Model. 

For each performance, we compute wj = log2 
(q+l - 7j) from the extracted noisy beats [q]. We 
denote the resulting tempo track {rl,  ~ 1 . .  . q ,  
wj . . .  9 ,  wj) as { T ~ : ~ ,  wl:j}. 

4.2 Estimation of state transition parameters 
We estimate the state transition model parameters 
A and Q by an EM algorithm (Ghahramani & 
Hinton, 1996) which learns a linear dynamics in the w 
space. The EM algorithm monotonically increases 
~ ( { q : ~ ,  w , :~ ) ) ,  i.e. the likelihood of the observed 
tempo track. Put another way, the parameters A and 
Q are adjusted in such a way that, at each j, the prob- 
ability of the observation is maximized under the 
predictive distributionp(q, ~ j l 7 j - ~ ,  wj-1, . . .  71, wl). 
The likelihood is simply the hight of the predictive 
distribution evaluated at the observation (See Fig. 1). 

4.3 Estimation of switch parameters 
The observation model is a Gaussian mixture with 
diagonal R, and prior probability p,. We could esti- 
mate R, and p, jointly with the state transition para- 
meters A and Q. However, then the noise model 
would be totally independent from the tempogram 
representation. Instead, the observation noise model 
should reflect the uncertainty in the tempogram; for 
example the expected amount of deviations in (7, w) 

. . . . . . . . . . .  

Switch ' . . 

estimates due to spurious local maxima. To estimate 
the "tempogram noise" by standard EM methods, we 
sample from the tempogram around each [.ij, Gj], i.e. 
we sample 7j and wj from the posterior distribution 

~ ( 7 j ,  wjl5, Gj, t; Q) ~ ~ ( f l q ,  wj)p(7j, ~ j l 7 j . 7  Gj; Q). 
Note that [.ij, Gj] are estimated during the E step of 
the EM algorithm when finding the parameters A 
and Q. 

4.4 Estimation of Tempogram parameters 
We have already defined the tempogram as a like- 
lihood p(t17, w; 8) where 8 denotes the tempogram 
parameters (e.g. 8 = {a ,  a,}). Ifwe assume a uniform 
prior p(r, W) then the posterior probability can be 
written as 

where the normalization constant is given byp(t18) = 

S drdwp(t IT, w; 8). Now, we can estimate tempogram 
parameters 8 by a maximum likelihood approach. We 
write the log-likelihood of an observed tempo track 
{ r l : ~ ,  WI:J} as 
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Note that the quantity in Equation 10 is a hnction of 
the parameters 8. If we have k tempo tracks in the 
dataset, the complete data log-likelihood is simply 
the sum of all individual log-likelihoods. i.e. 

where tk is the k'th performance and {rI: J, wl: J}k is 
the corresponding tempo track. 

5 EVALUATION 

Many tempo trackers described in the introduction 
are often tested with ad hoc examples. However, 
to validate tempo tracking models, more systematic 
data and rigorous testing is necessary A tempo 
tracker can be evaluated by systematically modulat- 
ing the tempo of the data, for instance by applying 
instantaneous or gradual tempo changes and com- 
paring the models responses to human behavior 
(Michon, 1967; Dannenberg, 1993). Another 
approach is to evaluate tempo trackers on a system- 
atically collected set of natural data, monitoring 
piano performances in which the use of expressive 
tempo change is free. This type of data has the 
advantage of reflecting the type of data one expects 
automated music transcription systems to deal with. 
The latter approach was adopted in this study 

5.1 Data 
For the experiment 12 pianists were invited to play 
arrangements of two Beatles songs, Michelle and 
Yesterday Both pieces have a relatively simple rhyth- 
mic structure with ample opportunity to add express- 
iveness by fluctuating the tempo. The subjects 
consisted of four professional jazz players (PJ), four 
professional classical performers (PC) and four 
amateur classical pianists (AC). Each arrangement 
had to be played in three tempo conditions, three 
repetitions per tempo condition. The tempo condi- 
tions were normal, slow and fast tempo (all in a 
musically realistic range and all according to the 
judgment of the performer). We present here the 
results for twelve subjects (12 subjects x 3 tempi x 3 
repetitions x 2 pieces = 2 16 performances). The per- 

Pro MIDI grand piano using Opcode Vision. To be 
able to derive tempo measurements related to the 
musical structure (e.g., beat, bar) the performances 
were matched with the MIDI scores using the 
structure matcher of Heijink et al. (2000) available 
in POCO (Honing, 1990). This MIDI data, as 
well as related software will be made available 
at URL's http: //www.mbfLs. kun.nl/ - cemgil and 
http : //www.nici. kun.nl/mmm (under the heading 
Download). 

5.2 Kalman Filter Training results 
We use the performances of Michelle as the training 
set and Yesterday as the test set. To find the appro- 
priate filter order (Dimensionality of s) we trained 
Kalman filters of several orders on two rhythmic 
levels: the beat (quarter note) level and the bar (whole 
note) level. Figure 6 shows the training and testing 
results as a function of filter order. 

Extending the filter order, i.e. increasing the size of 
the state space loosely corresponds looking more into 
the past. At bar level, using higher order filters merely 
results in overfitting as indicated by decreasing test 
likelihood. In contrast, on the beat level, the like- 
lihood on the test set also increases and has a jump 
around order of 7. Effectively, this order corresponds 
to a memory which can store state information from 
the past two bars. In other words, tempo fluctuations 
at beat level have some structure that a higher 
dimensional state transition model can make use of 
to produce more accurate predictions. 

5.3 Tempogram Training Results 
We use a tempogram model with a first order IIR 
comb basis. This choice leaves two free parameters 
that need to be estimated from data, namely a,  the 
coefficient of the comb filter and a,, the width of the 
Gaussian window. We obtain optimal parameter 
values by maximization of the log-likelihood in 
Equation 11 on the Michelle dataset. The resulting 
likelihood surface is shown in Figure 7. The optimal 
parameters are shown inTable 2. 

Table 2. Optimal tempogram parameters. 

Non-Causal 0.55 0.0 17 
Causal 0.73 0.023 

formances were recorded on a Yamaha Disklavier 
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lo4 Log-Li kelihood. Beat Level 

Hidden State Space Dimension 

Log-Likelihood. Bar Level 

Hidden State Space Dimension 

Fig. 6. Kalman Filter training. Training Set: Michelle,Test Set: Yesterday. 

5.4 Initialization 
To have a hlly automated tempo tracker, the initial 
state so has to be estimated from data as well. In the 
tracking experiments, we have initialized the filter to 
the beat level by computing a tempogram for the first 
5 seconds of each performance. By assuming a flat 
prior on r and w we compute the posterior marginal 
p(w1t) = Sdrp(w, rlt). Note that this is operation is 
just equivalent to summation along the 7 dimension 
of the tempogram (See Fig. 4). For the Beatles data- 
set, we have observed that for all performances of a 
given piece, the most likely log-period w* = arg max, 

p(w)t) corresponds always to the same level, i.e. the w* 
estimate was always consistent. For "Michelle", this 
level is the beat level and for "Yesterday" the half-beat 
(eighth note) level. The latter piece begins with an 
arpeggio of eight notes; based on onset information 
only, and without any other prior knowledge, 
half-beat level is also a reasonable solution. For 
"Yesterday", to test the tracking performance, we 
corrected the estimate to the beat level. 

We could estimate r* using a similar procedure, 
however since all performances in our data set 
started "on the beat", we have chosen r* = t l ,  the first 
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Fig. 7. Log-likelihood surface of tempogram parameters a and a, on Michelle dataset. 

onset of the piece. All the other state variables a. 
are set to zero. We have chosen a broad initial state 
covariance Po = 9Q. 

5.5 Evaluation of tempo tracking performance 
We evaluated the accuracy of the tempo tracking 
performance of the complete model. The accuracy of 
tempo tracking is measured by using the following 
criterion: 

where [Gi] i = 1 . . . I is the target (true) tempo track 
and [GI j = 1 . . . J is the estimated tempo track. W 
is a window function. In the following results we 
have used a Gaussian window function W(d) = 

exp(-d2/2ai). The width of the window is chosen 
as a, = 0.04 sec which corresponds roughly to the 
spread of onsets from their mechanical means during 
performance of short rhythms (Cemgil et al., 2000). 

It can be checked that 0 5 p 5 100 and p = 100 if 
and only if $ = t. Intuitively, this measure is similar 
to a normalized inner-product (as in the tempogram 
calculation); the difference is in the max operator 
which merely avoids double counting. For example, if 

the target is + = [O, 1, 21 and we have t = [O, 0, 01, the 
ordinary inner product would still give p = 100 while 
only one beat is correct ( t  = 0). The proposed meas- 
ure gives p = 33 in this case. The tracking index p 
canbe roughly interpreted as percentage of "correct" 
beats. For example, p = 90 effectively means that 
about 90 percent of estimated beats are in the near 
vicinity of their targets. 

5.6 Results 
To test the relative relevance of model components, 
we designed an experiment where we evaluate the 
tempo tracking performance under different condi- 
tions. We have varied the filter order and enabled or 
disabled switching. For this purpose, we trained two 
filters, one with a large (10) and one with a small 
(2) state space dimension on beat level (using the 
Michelle dataset). We have tested each model with 
both causal and non-causal tempograms. To test 
whether a tempogram is at all necessary, we propose 
a simple onset-only measurement model. In this 
alternative model, the next observation is taken as the 
nearest onset to the Kalman filter prediction. In case 
there are no onsets in l a  interval of the prediction, we 
declare the observation as missing (Note that this is 
an implicit switching mechanism). 
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Table 3. Average tracking performance p and standard 
deviations on Yesterday dataset using a non-causal 
tempogram. + denotes the case when we have the switch 
prior p(c) = [0.8,0.2]. - denotes the absence of a switch- 
ing, i.e., the case when p(c) = [1,0]. 

Filter order Switching tempogram no tempogram 

Table 4. Average tracking performance p on Yesterday 
dataset. Figures indicate tracking index p followed by the 
standard deviation. The label "non-causal" refers to a 
tempogram calculated using non-causal comb filters. The 
labels predicted, filtered and smoothed refer to state 
estimates obtained by the Kalman filterlsmoother. 

Filter order causal 

predicted filtered smoothed 

In Table 3 we show the tracking results averaged 
overall performances in the Yesterday dataset. The 
estimated tempo tracks are obtained by using a non- 
causal tempogram and Kalman filtering. In this case, 
Kalman smoothed estimates are not significantly 
different. The results suggest, that for the Yesterday 
dataset, a higher order filter or a (binary) switching 
mechanism does not improve the tracking perfor- 
mance. However, presence of a tempogram makes 
the tracking performance both more accurate and 
consistent (note the lower standard deviations). As a 
"base line" performance criteria, we also compute 
the best constant tempo track (by a linear regression 
to estimated tempo tracks). In this case, the average 
tracking index obtained from a constant tempo ap- 
proximation is rather poor (p = 28 f 18), confirm- 
ing that there is indeed a need for tempo tracking. 

We have repeated the same experiment with a 
causal tempogram and computed the tracking per- 
formance for predicted, filtered and smoothed esti- 
mates. In Table 4 we show the results for a switching 
Kalman filter. The results without switching are not 

significantly different. As one would expect, the 
tracking index with predicted estimates is lower. In 
contrast to a non-causal tempogram, smoothing 
improves the tempo tracking and results in a com- 
parable performance as a non-causal tempogram. 

Naturally, the performance of the tracker depends 
on the amount of tempo variations introduced by the 
performer. For example, the tempo tracker fails con- 
sistently for a subject who tends to use quite some 
tempo ~ar ia t ion .~  

We find that the tempo tracking performance is not 
significantly different among different groups 
(Table 5). However, when we consider the predic- 
tions, we see that the performances of professional 
classical pianists are less predictable. For different 
tempo conditions (Table 6) the results are also sim- 
ilar. As one would expect, for slower performances, 
the predictions are less accurate. This might have two 
potential reasons. First, the performance criteria p is 
independent of the absolute tempo, i.e. the window 
W is always fixed. Second, for slower performances 
there is more room for adding expression. 

Table 5. Tracking Averages on subject groups. As a reference, the right most column shows the results 
obtained by the best constant tempo track. The label "non-causal" refers to a tempogram calculated 
using non-causal comb filters. The labels predicted, filtered and smoothed refer to state estimates 
obtained by the Kalman filterlsmoother. 

Subject Group non-causal causal 

filtered predicted filtered smoothed Best const. 

Prof. Jazz 95 4I 3 81 & 7  92 f 4 94 f 3 34 f 22 
Amateur Classical 92 4I 8 74 f 7 88 + 5 92 f 4 2421 19 
Prof. Classical 89 4I 7 66 f 14 8 2 f  11 8 6 f  11 2 7 f  12 

This subject claimed to have never heard the Beatles songs before. 
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Table 6. Tracking Averages on tempo conditions. As a reference, the right most column shows the 
results obtained by the best constant tempo track. The label "non-causal" refers to a tempogram 
calculated using non-causal comb filters. The labels predicted, filtered and smoothed refer to state 
estimates obtained by the Kalman filter/smoother. 

Condition non-causal causal 

filtered predicted filtered smoothed Best const. 

fast 94 * 5 79 f 9 90 f 6 9 3 f  6 39 f 21 
normal 92 f 8 74 f 9 8 8 f  6 9 2 f 4  2 5 f  13 
slow 90 f 7 68 k 14 84 k 10 87 & 11 21 f 14 

6 DISCUSSION AND CONCLUSIONS 

In this paper, we have formulated a tempo tracking 
model in a probabilistic framework. The proposed 
model consist of a dynamical system (a Kalman 
Filter) and a measurement model (Tempogram). 
Although many of the methods proposed in the 
literature can be viewed as particular choices of a 
dynamical model and a measurement model, a 
Bayesian formulation exhibits several advantages in 
contrast to other models for tempo tracking. First, 
components in our model have natural probabilistic 
interpretations. An important and very practical 
consequence of such an interpretation is that uncer- 
tainties can be easily quantified and integrated into 
the system. Moreover, all desired quantities can be 
inferred consistently For example once we quantifL 
the distribution of tempo deviations and expressive 
timing, the actual behavior of the tempo tracker 
arises automatically from these a-priori assump- 
tions. This is in contrast to other models where one 
has to invent ad-hoc methods to avoid undesired or 
unexpected behavior on real data. 

Additionally, prior knowledge (such as smoothness 
constraints in the state transition model and the par- 
ticular choice of measurement model) are explicit 
and can be changed when needed. For example, the 
same state transition model can be used for both 
audio and MIDI; only the measurement model needs 
to be elaborated. Another advantage is that, for a 
large class of related models efficient inference and 
learning algorithms are well understood (Ghahra- 
mani & Hinton, 1996). This is appealing since we can 
train tempo trackers with different properties auto- 
matically from data. Indeed, we have demonstrated 

that all model parameters can be estimated from 
experimental data. 

We have investigated several potential directions in 
which the basic dynamical model can be improved or 
simplified. We have tested the relative relevance of the 
filter order, switching and the tempogram repre- 
sentation on a systematically collected set of natural 
data. The dataset consists of polyphonic piano 
performances of two Beatles songs (Yesterday and 
Michelle) and contains a lot of tempo fluctuation as 
indicated by the poor constant tempo fits. 

The test results on the Beatles dataset suggest that 
using a high order filter does not improve tempo 
tracking performance. Although beat level filters 
capture some structure in tempo deviations (and 
hence can generate more accurate predictions), this 
additional precision seems to be not very important 
in tempo tracking. This indifference may be due to 
the fact that training criteria (maximum likelihood) 
and testing criteria (tracking index), whilst related, are 
not identical. However, one can imagine scenarios 
where accurate prediction is crucial. An example 
would be a real-time accompaniment situation, where 
the application needs to generate events for the 
next bar. 

Test results also indicate that a simple switching 
mechanism is not very usehl. It seems that a tempo- 
gram already gives a robust local estimate of likely 
beat and tempo values so the correct beat can unam- 
biguously be identified. The indifference of switching 
could as well be an artifact of the dataset which lacks 
extensive syncopations. Nevertheless, the switching 
noise model can further be elaborated to replace the 
tempogram by a rhythm quantizer (Cemgil et al., 
2000). 
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To test the relevance of the proposed tempogram 
representation on tracking performance we have 
compared it to a simpler, onset based alternative. The 
results indicate that in the onset-only case, tracking 
performance significantly decreases, suggesting that 
a tempogram is an important component of the system. 

It must be noted that the choice of a comb basis set 
for tempogram calculation is rather arbitrary. In 
principle, one could formulate a "richer" tempogram 
model, for example by including parameters that 
control the shape of basis fimctions. The parameters 
of such a model can similarly be optimized by like- 
lihood maximization on target tempo tracks. Unfor- 
tunately, such an optimization (e.g., with a generic 
technique such as gradient descent) requires the 
computation of a tempogram at each step and is thus 
computationally quite expensive. Moreover, a model 
with many adjustable parameters might eventually 
overfit. 

We have also demonstrated that the model can be 
used both online (filtering) and omine (smoothing). 
Online processing is necessary for real time applic- 
ations such as automatic accompaniment and ofline 
processing is desirable for transcription applications. 
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