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Abstract

We describe a biophysically motivated model of auditory salience and
present results which show that the derived measure of salience can be
used to successfully identify the position of perceptual onsets in a musi-
cal stimulus. We evaluate the method using a corpus of unaccompanied
freely sung stimuli. We briefly show that perceptual onsets detected by
the model are in good agreement with those identified by a combination
of state-of-the-art algorithms and manual correction. We show that this
continuous measure of salience can be used to track and predict rhythmic
structure on the basis of its periodicity, thus avoiding thenecessity forad
hocdecisions as to if, or when, an event has occurred.

1 Introduction

When listening to auditory stimuli, particularly music, wetend to find certain events per-
ceptually salient; if this were not the case then it is difficult to see how a sense of rhythm
could emerge. Such events are often referred to asperceptual onsets. This begs the ques-
tion ‘what is meant by perceptual onsets?’ and challenges usto propose a method by which
they might be identified. There are, of course a number of candidate features that may con-
tribute to the greater perceptual salience of one part of thestimulus compared to another;
abrupt changes in energy and spectral distribution for example might seem like plausible
candidates. Even sophisticated algorithms based on such hypotheses enjoy mixed success,
particularly with difficult stimuli such as unaccompanied singing [1]. For research purposes
perceptual onsets are annotated manually and it is these judgements that are compared to
those of any candidate algorithm.

One thing that emerges from the temporal pattern of perceptual onsets in human listeners
is a complex judgement of rhythmic structure at many levels.One of the most important
percepts to emerge is thetactuswhich can be thought of as the rhythm with which one



would be tempted to ‘clap along with the tune’. In order to quantify the performance of
any model that identifies and tracks the tactus the ‘clappingpositions’ orbeat markersalso
need to be manually annotated.

In previous work [2, 3, 4] we have proposed that the perceptual salience of events might
arise out of the population response of an ensemble of spectro-temporal filters, such as
those used to describe cortical responsesin vivo, which are related to properties of forma-
tive stimuli during early experience, in particular speech. Here we take the first steps in
investigating whether this novel, biophysically motivated approach is suitable for the field
of automatic musical processing. The response of the ‘cortical’ part of our model does,
we have shown, identify events in speech which form temporally sparse markers, and the
pattern of responses within these events can be used to classify the stimuli in a variety
of behaviourly relevant ways. Here we employ the same algorithms with some additional
processing to show that this approach successfully identifies positions in musical samples
which agree well with positions of annotated perceptual onsets.

However, the usefulness of discrete event markers notwithstanding, what emerges from
the model is acontinuousmeasure of salience. This can be used to mark the position
of events only by usingad hoccriteria such as a threshold. However we show, using a
wavelet decomposition model, that the continous salience variable can be used to derive the
tactus without using the perceptual onset positions, and that models of emerging rhythmic
perception can be built without any recourse to complex discussions about what constitutes
an event or perceptual onset. This approach is similar to, but distinct from, approaches
which are based on the envelope of the signal; for example [5].

2 Methods.

2.1 Salience.

Our model of auditory processing was developed in order to investigate the representation
and classification of complex sounds [2, 3, 4]. In this section we briefly outline the key
aspects of the existing model before describing how it can beapplied to the problem of
detecting perceptual onsets in music.

Cochlear model.

We start with the waveform of the stimulus, an example is shown in Figure 1(a). The
first processing stage is a linear gammatone filter bank and this is followed by half wave
rectification and low pass filtering, with cut off frequency 1000Hz, to simulate the phase
locking characteristics of auditory nerve firing. We use 30 filters with centre frequencies
(CFs) ranging from 50 to 8000Hz equally spaced on theERB scale [6]. The resulting
cochleographic representation is illustrated in Figure 1(b). The cochlear model is down-
sampled to 1000Hz.

Transient enhancement.

The second stage simulates the transient responses prevalent in the central auditory sys-
tem. Transients are calculated as short term increases or decreases in energy independently
within each of the 30 channels of the cochlear model using thethird order moment of the
amplitude distribution within a sliding window [3, 4]. The duration of the window varies
with the centre frequency (CF) of the channel and ismin(0.01, 8/CFi) seconds wherei
is the channel number. Therefore, in order to calculate the transient response, a variable
duration short term memory of up to 160 ms is required. Both onset and offset transients
are found in this way but only the onset transients are used infurther processing, see Fig-



ure 1(c). To further reduce the computational overhead the output of the transient module
is down-sampled to 200Hz.

Cortical model.

The third stage consists of convolving the onset transient activity with a set of kernels
representing cortical filters [3]. These filters are a set of fragments of stimuli chosen to
maximize information with respect to a set of formative sounds, in this case speech. The
detailed derivation of the cortical filters is beyond the scope of this paper, and is fully
described in [2, 3, 4]. In the model there are 303 cortical filters, the properties of which
are very similar to the spectro-temporal receptive fields estimated for neurons in primary
auditory cortex [7]. An important characteristic of the responses of these filters is that they
generate a set of punctate bursts of activity which mark salient events in the ongoing sound,
see Figure 1(d). As the results presented herein indicate, these correlate closely with the
positions of perceptual onsets annotated in the stimulus corpora. A short term memory
of 100 ms is required for the convolution, to match the maximum temporal extent of the
kernels that describe the cortical filters.

Finally the rises and falls in energy of the summed cortical response are detected using
the third order moment of the amplitude distribution withina sliding window in a similar
way to that described above; this constitutes the salience measure and is illustrated in Fig-
ure 1(e)(solid line). If the output is to be interpreted as discrete, the threshold is set as a
function of the first peak in the salience response output andadjusted dynamically to track
the changing saliency levels.

2.2 HFC- based onset detection.

The other acoustic model we use for comparison is the Aubio algorithm proposed by
Brossier [8] which is described in detail elsewhere. This implements a number of onset de-
tection algorithms including that used here; the High-Frequency Content (HFC) [9], which
is a linear weighting corresponding to bin frequency of the Short Time Fourier Transform
(STFT) frame to emphasise the high frequency energy within the signal. As pointed out by
Brossier [8], theHFC detection function emphasises the higher part of the spectrum, usually
associated with percussive sounds, while it is less responsive to soft onsets such as bowed
sounds or flute attacks.

2.3 The Wavelet Transform.

Multi-resolution representations of rhythm have been demonstrated to reveal periodici-
ties in the temporal structure of onsets [10, 11, 12]. The continuous wavelet transform
(CWT) [13] decomposes a time varying signal using scaled and translated versions of a
mother-wavelet. The geometric scaling gives the wavelet transform a ‘zooming’ capability
over a logarithmic frequency range, such that high frequencies are localized by the win-
dow over short time scales, and low frequencies are localized over longer time scales. For
a discrete implementation, each wavelet is a scaled and translated instance from a bank
of constant relative bandwidth filters. A sufficient densityof scales or ‘voices’ per oc-
tave is required (16 in this application) for discrimination of expressive timing. Morlet and
Grossmann’s mother-wavelet [14] is used in this application, being a scaled complex Gabor
function,

g(t) = e−t2/2
· ei2πω0t (1)

whereω0 is the frequency of the mother-wavelet before it is scaled,ω0 = 6.2 in this ap-
plication. The Gaussian envelope over the complex exponential provides the best possible
simultaneous time/frequency localization [14]. This enables short term periodicities con-
tained in the rhythm to be represented in the analysis.
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Figure 1: (a) sound wave from an excerpt of Dutch folk song; (b) cochlear model response;
(c) onset transients; (d) results of convolution with cortical filters; (e) the summed response
from (d) (broken line), and the salience measure derived from the summed cortical response
(solid line). For explanation see Section 2.1.

The wavelet coefficients at each time and scale can be computed as separate magnitude
(scaleogram) and phase components, with spectral energy across time defined as time-
frequency ridges. When applied to musical rhythm, a time-frequency ridge is an oscillation
at a rhythmic frequency, over a period of time, incorporating rubato. Ridges in the scale-
ogram function as beat periods that are prominent and can, for example, serve as the rate
that listeners tap or otherwise attend to a musical rhythm, ie the tactus.

A CWT analysis is used here to identify time varying periodicities in the salience signal de-
scribed above. While the thresholded discrete perceptual onsets can also be analysed with



the CWT, the continuous salience measure also captures rhythmic information expressed
other than simply in the event onset, such as the rate of vibrato. TheCWT scaleogram is
weighted for absolute tempo preference by a Gaussian envelope with a mean matching the
spontaneous tempo rate of 0.6 seconds [15] and a standard deviation of one rhythmic oc-
tave (i.e. doubling or halving the beat rate). An integrating auditory store amasses evidence
as to the most prominent rhythmic ridge corresponding to thetactus. The frequency of this
ridge will vary over time as the rhythm unfolds. In combination with the analysis phase, a
rhythmic oscillator can be computed which can be used to clapto accompany the original
rhythm at the tactus rate [16]. The clapping is locked to the phase of the first large peak in
the salience.

2.4 Evaluations against annotated corpora.

Unaccompanied and freely sung stimuli are not those which would typically be chosen for
evaluating systems that identify perceptual onsets or beats. This is one of the hard prob-
lems in automatic processing of music. Although such stimuli do not contain percussive
elements they do have a rhythmic structure that is clear to listeners even if it is not marked
by large, or abrupt changes in amplitude or spectral contourbut is marked out by salient
parts of the stimuli.

The first corpus used for evaluation consisted of 94 melodiessung, without words, to im-
itate the sound of a saxophone [17]. These stimuli are referred to here as theSUNG-SAX
corpus. Each melody occurs twice, in slow and fast style. Theperceptual onsets in these
recordings were automatically annotated and then checked and adjusted manually.

We also report results from a small corpus of six freely sung unaccompanied folk songs
referred to here as theSUNG-FOLK corpus. These represent a yet greater challenge as
some exhibit beat omissions and inconstant tempi. Three areAustrian folk songs from the
Essen collection recorded at the MTG. The remaining three are Dutch folk songs from the
collection of the Meertens institute in Amsterdam. These stimuli have been annotated by
one or more of the authors who are experienced musicians. Each stimulus requires two
sets of annotations; one for onset detection and one for beatpositions. An example from
the second corpus is shown in Figure 3, the waveform is overlaid with the cortical salience
response and stem markers showing the annotated positions (diamonds) and the positions
of the events identified by thresholding the salience (stars).

To assess the performance, detected onsets and tactus beat positions from the salience sig-
nal and theCWT model are compared with the annotated values. If a detected onset or
beat falls within some tolerance window of an annotated event, typically ±50 ms, then it
is considered to be correct, otherwise it is considered to bean error. A distinction is made
between precision P, the number of correct detections as a proportion of all detections,
and recall R, the number of annotated onsets which were correctly detected. Clearly it is
desirable to maximize both, and so a combined measure the F-score is computed, where
F = (2 × P × R)/(P + R) [18].

3 Results.

3.1 Perceptual onsets using singing samples.

The first set of results are obtained from theSUNG-SAX corpus; Figure 2 summarizes the
performance. Figure 2 shows the distribution of F-scores over the entire corpus and, for
comparison, the results from the same corpus using the onsets derived from the Aubio-HFC
algorithm.

The results in Figure 2 show that the salience signal outperforms the Aubio-HFC algorithm
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Figure 2: (a) distribution of F-scores over the entireSUNG-SAX corpus using 50 ms toler-
ance window, shown for both methods outlined in the text (Aubio with HFC onset detector,
threshold 0.5). (b) Graphs showing the change in the F-scores with a range of tolerance
window sizes for both methods.

for this group of stimuli in a 50 ms tolerance window. Resultsfrom the two methods are
similar for windows of 20-30 ms and the Aubio-HFC algorithm outperforms the auditory
salience model with windows less than 20 ms.

The second set of results is derived from theSUNG-FOLK corpus; the F-scores are shown
in Table 1. The F-scores are comparable to those obtained using theSUNG-SAX corpus
for the Austrian folk songs (a,b,c) and lower (particularlysong-d) for the songs from the
Netherlands which are sung in a less precise, less formal style.
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Figure 3: Events in an example stimulus. The waveform is plotted in grey and the salience
(cortical response) in black. Peaks in this trace are used toidentify perceptual onsets (stars).
Annotated onsets are marked with diamonds. The height of theonset stem markers is
unrelated to saliency and simply chosen to make the correspondence clear.

Table 1: The F-scores for onset position detection in the sixfolk songs.
F-scores song-a song-b song-c song-d song-e song-f

Auditory model 0.921 1.000 0.950 0.343 0.500 0.609
Aubio-HFC 0.909 0.915 0.778 0.417 0.772 0.598

mean F-scores songs a,b,c songs d,e,f
Auditory model 0.957 0.484

Aubio-HFC 0.867 0.596



3.2 Beat marking in singing samples.

In this section we present a number of results obtained from the continuous salience output.
This is used as input to theCWT algorithm that extracts periodicity and makes predictions
of the tactus. For each stimulus in the corpus of folk songs the continuous salience measure
was derived as detailed in Section 2.1 and the positions of the tactus beat markers derived
using the methods described in Section 2.3. These were then compared to the annotated
beat times using the method outlined above. The results are presented here in Table 2 but
are best appreciated by listening to the sound files of the original stimuli overlaid with
synthesized percussion at the times identified by the model.Representative samples of
these results can be downloaded fromhttp://emcap.iua.upf.es/ the EmCAP
project website.

Table 2: The results of the F scores for the tactus events, ourannotations against the times
from theCWT model.

song-a song-b song-c song-d song-e song-f
F-scores 0.500 0.639 0.394 0.750 0.457 0.141
Precision 0.375 0.479 0.292 0.750 0.444 0.104

Recall 0.750 0.958 0.609 0.750 0.471 0.217

Stimuli a-c show recall scores well above precision scores indicating that the model predicts
the tactus beat positions well, but places other beats between these positions. In other
words it tends to ‘clap too fast’; for example in song-f whichis in 6/8 time the model’s
tempo weighting prevents the selection of the correct tactus and instead a quaver beat is
selected rather than the more likely dotted crotchet beat. The tuning and application of
tempo weighting is a current research task. As previously mentioned, these stimuli (d-f)
are sung in a very loose style which would be challenging evenfor a human listener to clap
to on first hearing.

4 Conclusions and Discussion.

This method is novel in that it is inspired by models of the auditory system and tasks such as
beat marking in auditory stimuli are not routinely addressed using a biophysically inspired
approach. The results presented here are closely related toprevious work which has demon-
strated that transient peaks in the model cortical responsemark events that are salient; ie
the pattern of responses in these peaks can be used to classify stimuli in a number of be-
haviourly important ways [3, 4]. However the emergence of rhythmic structure as a high
level percept certainlyis behaviourly important, at least in humans. We have shown that
multiscale models that reveal periodicities in stimuli, from which rhythmic structure might
emerge, can be informed by models of cortical processing andneed not be complicated
by considerations of when a salient event might, or might nothave occurred. However, if
the position of salient events is required for some other processing, then these too can be
identified from the model cortical response.

A key feature of the derivation of the cortical filters, on which these results are based, is that
they were derived from speech, and selected on the basis of their responses to speech. In
additional work, not reported here, we have observed that these filters perform less well in
the detection of perceptual onsets in non-sung musical stimuli. The implication is, clearly,
that the population characteristics of the ensemble of filters used can be optimized with
respect to certain classes of stimuli. This possibility is currently being explored.

One aspect not explored here is how the onset detection is affected when the stimulus is
degraded by noise. In previous work we have shown that the response of the auditory



periphery model is itself robust to interference by noise [2, 19] so there is good reason to
be optimistic that the salience measure will also be useful in situations where the signal is
noisy.

The current version of the auditory pre-processing is fullycausal and suitable for real time
applications. The beat marking algorithm, which is not formulated in a causal way in the
current version, is nonetheless suitable for causal implementation. This modification to
a fully causal system would enable not just beatmarking, but beatprediction; that is the
system would ‘know’ when it should next clap before the clap was due.
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