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Abstract

We describe a biophysically motivated model of auditoryesede and
present results which show that the derived measure ohsaliean be
used to successfully identify the position of perceptuaets in a musi-
cal stimulus. We evaluate the method using a corpus of umaganied
freely sung stimuli. We briefly show that perceptual onsetected by
the model are in good agreement with those identified by a auatibn
of state-of-the-art algorithms and manual correction. Weansthat this
continuous measure of salience can be used to track anapriegthmic
structure on the basis of its periodicity, thus avoidingrikeessity foad
hocdecisions as to if, or when, an event has occurred.

1 Introduction

When listening to auditory stimuli, particularly music, wend to find certain events per-
ceptually salient; if this were not the case then it is difito see how a sense of rhythm
could emerge. Such events are often referred foeaseptual onsetsThis begs the ques-
tion ‘what is meant by perceptual onsets?’ and challengés pi®pose a method by which
they might be identified. There are, of course a number ofidaibelfeatures that may con-
tribute to the greater perceptual salience of one part oétiheulus compared to another;
abrupt changes in energy and spectral distribution for @@might seem like plausible
candidates. Even sophisticated algorithms based on symdthgses enjoy mixed success,
particularly with difficult stimuli such as unaccompani@ugng [1]. For research purposes

perceptual onsets are annotated manually and it is thegenuehts that are compared to
those of any candidate algorithm.

One thing that emerges from the temporal pattern of pereéptisets in human listeners
is a complex judgement of rhythmic structure at many levB@lse of the most important
percepts to emerge is thactuswhich can be thought of as the rhythm with which one



would be tempted to ‘clap along with the tune’. In order to wjify the performance of
any model that identifies and tracks the tactus the ‘clappositions’ orbeat markerslso
need to be manually annotated.

In previous work [2, 3, 4] we have proposed that the percépgaléence of events might
arise out of the population response of an ensemble of spttporal filters, such as
those used to describe cortical resporisegvo, which are related to properties of forma-
tive stimuli during early experience, in particular speettere we take the first steps in
investigating whether this novel, biophysically motivdgpproach is suitable for the field
of automatic musical processing. The response of the tairtpart of our model does,
we have shown, identify events in speech which form temposalarse markers, and the
pattern of responses within these events can be used tafldms stimuli in a variety
of behaviourly relevant ways. Here we employ the same alyos with some additional
processing to show that this approach successfully idesfifositions in musical samples
which agree well with positions of annotated perceptuaétms

However, the usefulness of discrete event markers notigitding, what emerges from
the model is acontinuousmeasure of salience. This can be used to mark the position
of events only by usingd hoccriteria such as a threshold. However we show, using a
wavelet decomposition model, that the continous salieadable can be used to derive the
tactus without using the perceptual onset positions, aatdttodels of emerging rhythmic
perception can be built without any recourse to complexudisions about what constitutes
an event or perceptual onset. This approach is similar tbdistinct from, approaches
which are based on the envelope of the signal; for example [5]

2 Methods.

2.1 Salience.

Our model of auditory processing was developed in ordentestigate the representation
and classification of complex sounds [2, 3, 4]. In this secti@ briefly outline the key
aspects of the existing model before describing how it canfied to the problem of
detecting perceptual onsets in music.

Cochlear model.

We start with the waveform of the stimulus, an example is shawFigure 1(a). The

first processing stage is a linear gammatone filter bank asdsttiollowed by half wave

rectification and low pass filtering, with cut off frequend®QD H z, to simulate the phase
locking characteristics of auditory nerve firing. We use &er with centre frequencies
(crs) ranging from 50 to 800@7 > equally spaced on therB scale [6]. The resulting

cochleographic representation is illustrated in Figut®).1The cochlear model is down-
sampled to 10001 .

Transient enhancement.

The second stage simulates the transient responses prteivatbe central auditory sys-
tem. Transients are calculated as short term increases@ades in energy independently
within each of the 30 channels of the cochlear model usingting order moment of the
amplitude distribution within a sliding window [3, 4]. Theudhtion of the window varies
with the centre frequencycf) of the channel and imin(0.01, 8/CF;) seconds where

is the channel number. Therefore, in order to calculaterdrestent response, a variable
duration short term memory of up to 160 ms is required. Botbeband offset transients
are found in this way but only the onset transients are uséariher processing, see Fig-



ure 1(c). To further reduce the computational overhead tiput of the transient module
is down-sampled to 208 z.

Cortical model.

The third stage consists of convolving the onset transietivity with a set of kernels
representing cortical filters [3]. These filters are a setrafjfments of stimuli chosen to
maximize information with respect to a set of formative sisyrin this case speech. The
detailed derivation of the cortical filters is beyond the me®f this paper, and is fully
described in [2, 3, 4]. In the model there are 303 corticafilt the properties of which
are very similar to the spectro-temporal receptive fieldsreged for neurons in primary
auditory cortex [7]. An important characteristic of thepenses of these filters is that they
generate a set of punctate bursts of activity which marksaévents in the ongoing sound,
see Figure 1(d). As the results presented herein indidategtcorrelate closely with the
positions of perceptual onsets annotated in the stimulgsoca. A short term memory
of 100 ms is required for the convolution, to match the maximtemporal extent of the
kernels that describe the cortical filters.

Finally the rises and falls in energy of the summed cortieaponse are detected using
the third order moment of the amplitude distribution withirsliding window in a similar
way to that described above; this constitutes the saliere@suare and is illustrated in Fig-
ure 1(e)(solid line). If the output is to be interpreted ascdéte, the threshold is set as a
function of the first peak in the salience response outputaigsted dynamically to track
the changing saliency levels.

2.2 HFC- based onset detection.

The other acoustic model we use for comparison is the Aulgordhm proposed by
Brossier [8] which is described in detail elsewhere. Thiplements a number of onset de-
tection algorithms including that used here; the High-Bey Content{{FC) [9], which

is a linear weighting corresponding to bin frequency of ther®Time Fourier Transform
(sTFT) frame to emphasise the high frequency energy within theasigAs pointed out by
Brossier [8], thedFc detection function emphasises the higher part of the spactisually
associated with percussive sounds, while it is less respotssoft onsets such as bowed
sounds or flute attacks.

2.3 TheWavelet Transform.

Multi-resolution representations of rhythm have been destrated to reveal periodici-
ties in the temporal structure of onsets [10, 11, 12]. Theinaous wavelet transform
(cwT) [13] decomposes a time varying signal using scaled andlated versions of a
mother-waveletThe geometric scaling gives the wavelet transform a ‘zogrdapability
over a logarithmic frequency range, such that high freqiesnare localized by the win-
dow over short time scales, and low frequencies are loghbzer longer time scales. For
a discrete implementation, each wavelet is a scaled andlatad instance from a bank
of constant relative bandwidth filters. A sufficient dengifyscales or ‘voices’ per oc-
tave is required (16 in this application) for discriminatiof expressive timing. Morlet and
Grossmann’s mother-wavelet [14] is used in this applicati@ing a scaled complex Gabor
function,

g(t) — €7t2/2 . €i27TUJ()t (1)

wherew is the frequency of the mother-wavelet before it is scaled= 6.2 in this ap-
plication. The Gaussian envelope over the complex expaigmbvides the best possible
simultaneous time/frequency localization [14]. This dratshort term periodicities con-
tained in the rhythm to be represented in the analysis.



Dutch Song excerpt, unaccompanied female Cochlear model response
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Figure 1: (a) sound wave from an excerpt of Dutch folk sonjcfirhlear model response;

(c) onset transients; (d) results of convolution with aatfilters; (e) the summed response
from (d) (broken line), and the salience measure derived ftee summed cortical response
(solid line). For explanation see Section 2.1.

The wavelet coefficients at each time and scale can be comhpstseparate magnitude
(scaleogrann and phase components, with spectral energy across timeededis time-
frequency ridges. When applied to musical rhythm, a tineerfiency ridge is an oscillation
at a rhythmic frequency, over a period of time, incorpomtinbato. Ridges in the scale-
ogram function as beat periods that are prominent and caeximple, serve as the rate
that listeners tap or otherwise attend to a musical rhytbrihe tactus.

A cwrT analysis is used here to identify time varying periodisiirethe salience signal de-
scribed above. While the thresholded discrete perceptsate can also be analysed with



the cwr, the continuous salience measure also captures rhythffisieriation expressed
other than simply in the event onset, such as the rate oftebfBhecwT scaleogram is
weighted for absolute tempo preference by a Gaussian ggwelith a mean matching the
spontaneous tempo rate of 0.6 seconds [15] and a standdedioiewf one rhythmic oc-
tave (i.e. doubling or halving the beat rate). An integiaditory store amasses evidence
as to the most prominent rhythmic ridge corresponding tdabtis. The frequency of this
ridge will vary over time as the rhythm unfolds. In combimatiwith the analysis phase, a
rhythmic oscillator can be computed which can be used totda@zcompany the original
rhythm at the tactus rate [16]. The clapping is locked to thase of the first large peak in
the salience.

2.4 Evaluationsagainst annotated corpora.

Unaccompanied and freely sung stimuli are not those whiallavypically be chosen for
evaluating systems that identify perceptual onsets orsbéliis is one of the hard prob-
lems in automatic processing of music. Although such stimalnot contain percussive
elements they do have a rhythmic structure that is cleasteriers even if it is not marked
by large, or abrupt changes in amplitude or spectral corttatits marked out by salient
parts of the stimuli.

The first corpus used for evaluation consisted of 94 meloglieg, without words, to im-
itate the sound of a saxophone [17]. These stimuli are edeir here as theUNG-SAX
corpus. Each melody occurs twice, in slow and fast style. gdreeptual onsets in these
recordings were automatically annotated and then cheakegd@justed manually.

We also report results from a small corpus of six freely sungacgompanied folk songs
referred to here as thBUNG-FOLK corpus. These represent a yet greater challenge as
some exhibit beat omissions and inconstant tempi. ThreAasgian folk songs from the
Essen collection recorded at the MTG. The remaining thre®artch folk songs from the
collection of the Meertens institute in Amsterdam. Thegaudi have been annotated by
one or more of the authors who are experienced musiciansh &anulus requires two
sets of annotations; one for onset detection and one forguesitions. An example from

the second corpus is shown in Figure 3, the waveform is adeslih the cortical salience
response and stem markers showing the annotated posidiamsagnds) and the positions

of the events identified by thresholding the salience (stars

To assess the performance, detected onsets and tactubigiaing from the salience sig-
nal and thecwT model are compared with the annotated values. If a detectselt @r
beat falls within some tolerance window of an annotated g\gpically +50 ms, then it
is considered to be correct, otherwise it is considered tarberror. A distinction is made
between precision P, the number of correct detections as@ogion of all detections,
and recall R, the number of annotated onsets which wereatbyrgetected. Clearly it is
desirable to maximize both, and so a combined measure tlcerE-s computed, where
F=(2xPxR)/(P+ R)[18].

3 Resaults.

3.1 Perceptual onsets using singing samples.

The first set of results are obtained from #1eNG-SAX corpus; Figure 2 summarizes the
performance. Figure 2 shows the distribution of F-scores tive entire corpus and, for
comparison, the results from the same corpus using thesodsgted from the Aubig+FC
algorithm.

The results in Figure 2 show that the salience signal outpsig the AubioHFcC algorithm
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Figure 2: (a) distribution of F-scores over the en8I&NG-SAX corpus using 50 ms toler-
ance window, shown for both methods outlined in the text (Awtith HFC onset detector,
threshold 0.5). (b) Graphs showing the change in the F-sosith a range of tolerance
window sizes for both methods.

for this group of stimuli in a 50 ms tolerance window. Restiltsn the two methods are
similar for windows of 20-30 ms and the Aubigrc algorithm outperforms the auditory
salience model with windows less than 20 ms.

The second set of results is derived from theNG-FOLK corpus; the F-scores are shown
in Table 1. The F-scores are comparable to those obtainaed thse SUNG-SAX corpus
for the Austrian folk songs (a,b,c) and lower (particulasng-d) for the songs from the
Netherlands which are sung in a less precise, less formal sty

song-c: F=0.95

Figure 3: Events in an example stimulus. The waveform iggdbin grey and the salience
(cortical response) in black. Peaks in this trace are usiektaify perceptual onsets (stars).
Annotated onsets are marked with diamonds. The height obtiset stem markers is
unrelated to saliency and simply chosen to make the cornelgpe clear.

Table 1: The F-scores for onset position detection in théadkxsongs.
F-scores song-a| song-b| song-c| song-d| song-e| song-f
Auditory model| 0.921| 1.000| 0.950| 0.343| 0.500| 0.609
Aubio-HFC 0.909| 0.915| 0.778| 0.417| 0.772] 0.598
mean F-scores| songs a,b,c songs d,ef
Auditory model 0.957 0.484
Aubio-HFC 0.867 0.596




3.2 Beat markingin singing samples.

In this section we present a number of results obtained fhenecdntinuous salience output.
This is used as input to thewT algorithm that extracts periodicity and makes predictions
of the tactus. For each stimulus in the corpus of folk songstntinuous salience measure
was derived as detailed in Section 2.1 and the positionseofatttus beat markers derived
using the methods described in Section 2.3. These were timapared to the annotated
beat times using the method outlined above. The resultsrasepted here in Table 2 but
are best appreciated by listening to the sound files of thginaii stimuli overlaid with
synthesized percussion at the times identified by the moRepresentative samples of
these results can be downloaded framt p: / / entap. i ua. upf. es/ the EmCAP
project website.

Table 2: The results of the F scores for the tactus eventgmustations against the times
from thecwT model.

| | song-a] song-b| song-c| song-d| song-e| song-f|

F-scores| 0.500 | 0.639 | 0.394 | 0.750 | 0.457 | 0.141
Precision| 0.375 | 0.479 | 0.292 | 0.750 | 0.444 | 0.104
Recall | 0.750 | 0.958 | 0.609 | 0.750 | 0.471 | 0.217

Stimuli a-c show recall scores well above precision scaréigating that the model predicts
the tactus beat positions well, but places other beats leetileese positions. In other
words it tends to ‘clap too fast’; for example in song-f whishin 6/8 time the model's
tempo weighting prevents the selection of the correct taand instead a quaver beat is
selected rather than the more likely dotted crotchet be&e tlining and application of
tempo weighting is a current research task. As previousigtimeed, these stimuli (d-f)
are sung in a very loose style which would be challenging évea human listener to clap
to on first hearing.

4 Conclusions and Discussion.

This method is novelin that it is inspired by models of theitargt system and tasks such as
beat marking in auditory stimuli are not routinely addreisssing a biophysically inspired
approach. The results presented here are closely relgpeeMious work which has demon-
strated that transient peaks in the model cortical respores& events that are salient; ie
the pattern of responses in these peaks can be used toyckssiflli in a number of be-
haviourly important ways [3, 4]. However the emergence gthimic structure as a high
level percept certainlis behaviourly important, at least in humans. We have shown tha
multiscale models that reveal periodicities in stimulgrfrwhich rhythmic structure might
emerge, can be informed by models of cortical processingnaed not be complicated
by considerations of when a salient event might, or mightvave occurred. However, if
the position of salient events is required for some othecgssing, then these too can be
identified from the model cortical response.

A key feature of the derivation of the cortical filters, on wihthese results are based, is that
they were derived from speech, and selected on the basigiofréisponses to speech. In
additional work, not reported here, we have observed tlestilters perform less well in
the detection of perceptual onsets in non-sung musicaustifhhe implication is, clearly,
that the population characteristics of the ensemble ofdiltesed can be optimized with
respect to certain classes of stimuli. This possibilityusrently being explored.

One aspect not explored here is how the onset detectionestadf when the stimulus is
degraded by noise. In previous work we have shown that thmonse of the auditory



periphery model is itself robust to interference by noisell? so there is good reason to
be optimistic that the salience measure will also be usafsituations where the signal is
noisy.

The current version of the auditory pre-processing is fa#lysal and suitable for real time
applications. The beat marking algorithm, which is not fatated in a causal way in the
current version, is nonetheless suitable for causal impigation. This modification to
a fully causal system would enable not just bewrking but beatprediction that is the
system would ‘know’ when it should next clap before the claswlue.
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