Single trial ERP allows Detection of Perceived and Imagined Rhythm
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Abstract

This study focuses on the traces of neuronal
processing of rhythm. A computational method
is presented for identifying, on the basis of EEG
signals, which rhythm a subject is listing too or
imagining. Preprocessing is conducted by inde-
pendent component analysis. A classification
based on correlations was able to correctly iden-
tify a single perceptual trial out of five presented
rhythms in about half of the cases. Identifying
imagined rhythm is harder, but the method still
performes significantly better than chance.

1 Introduction

In simple isochronous sequences, a random omission
of one note leads to a clear P300 component in the ERP
signal [Knight, 1996; Jongsma e.a. 2002]. But for real
musical rhythm the effect of a disruption has only been
measured in the final part of a passage [Besson, Faita &
Requin, 1994]. However, listening implies an ongoing
process of confirmation and violation of temporal ex-
pectancies [Desain, 1992; Large & Jones, 1999] and the
ERP signal contains traces thereof. These rhythmic sig-
natures can be extracted from the background-noise by an
appropriate signal processing method and may allow a
direct detection of perceived and imagined temporal pat-
terns from recorded neural activity. For this aim we
elaborated a method to identify, on the basis of single
trial electroencephalogram (EEG) data, which rhythmic
pattern is imagined or perceived by the subject.

For a classification of single EEG trials, the inherent
noisiness of the data is of prime concern. This noise
stems from eye and body movement, heartbeat and respi-
ration, line hum and, last but not least, neural activity not
related to the task under study. Noise suppression is
achieved for an ERP signal by averaging over a large
number of trials, assuming independence of the noise
from the time-locked processing of the stimulus. For re-
ducing noise in single measurements other methods must
be used. The different sources of neural activity can be
separated by maximizing their statistical independence,
i.e. their non-Gaussian character. This Independent Com-
ponent Analysis (ICA) [Jung e.a., 2000] can provide an

extraction and concentration of the relevant signal into a
few channels.

This preprocessing was applied to ERP traces recorded
while the participant was listening to, or imagining, short
rhythmical patterns. The resulting clean signals were
matched to a set of templates: the averaged ERP signals
for the rhythms under study. A classification decision,
based on maximum similarity between a single trial and
one of the templates, took into account the distribution of
the signal across the scalp and the spectral domain. In
contrast to what is common in ERP studies, no analysis
of waveforms or ERP components was needed, nor was
there a need to average data over a large group of sub-
jects. Using many sessions with a single highly experi-
enced subject, as is more common in psycho-acoustic
research, the feasibility of identification of perceived and
imagined rhythm by ERP was demonstrated.

Evading the complexities of expressive timing [Desain
& Honing, 2003], in this ERP experiment five mechani-
cal rhythmic patterns were used, originating from the
musical ditties used in a series of studies by Longuet-
Higgins [1976, 1982]. They were selected to be perceptu-
ally and musically different (see Fig. 1). The first is a
musical cliché with a syncopation: a violation of metric
expectation. In the second, expectation changes from
duple to triple meter. The next differs from it by only one
note, but is perceived rather differently, with an up-beat.
The first three notes of the fourth rhythm induce such a
strong metrical expectation that the following events are
perceived as syncopations. The last pattern is a random
series of time intervals and does not induce any metric
expectation and thus becomes hard to remember and re-
produce.

The rhythms were presented three times, each time at a
lower sound level, with a fourth repeat prompted only by
its first onset Thus the subject, who was instructed to
listen attentively and to actively imagine a fourth repeti-
tion, was guided smoothly from pure perceptual proc-
essing of a new and unexpected pattern (P-1), via a re-
peated and expected presentation (P-2, P-3), to imagery
of a pattern without any auditory stimulation (I). Only the
first and the last segment of the responses (P-1 and I)
were analyzed.
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Figure 1. The five rhythmical patterns as used in the ERP experiment. Audio examples are available at
http://www.nici.kun.nl/mmm/reading/.

2 Method

2.1

As subject a musician with more than twenty years of expe-
rience participated in five sessions. In each session thirty
trials were presented for each of five short rhythmic patterns
(see Fig. 1), in random order. A button was supplied for the
subject to signal when attention slipped or imagery failed
About 6 % of the trials were thus marked and excluded from
the analysis. A session lasted for about ninety minutes, in-
cluding three short breaks of about five minutes each. Be-
fore every session thirty segments of control data were re-
corded, without any task performed by the subject. The
stimuli were generated by a general MIDI synthesizer (Ya-
maha MU-90) controlled by a Macintosh G4 running the
POCO system [Honing, 1990] and an OMS Midi driver.
The sound was presented via a Yamaha MS-20 active loud-
speaker at one meter distance in front of the subject. The
sound consisted of a short “high woodblock” (General
MIDI) percussion sound (1 ms attack, 10 ms decay to 6 dB
below peak level). The stimuli were presented three times in
succession at a sound pressure level of 81, 71 and 54 dB(A)
at the subjects position. Between repetitions a short random
pause between one second and the duration of the pattern
was inserted and a longer pause (between three and five
seconds) separated the trials. The subject was instructed to
attend carefully the three repetitions and actively imagine a
fourth one, prompted by its first onset only.

Subject, stimuli and task

2.2 Data collection

The experiment took place in an acoustically and electri-
cally shielded room, digitally recording an EEG from the

Fz, Cz, Pz, Fpl, Fp2, F3, F4, F7, F§, C3, C4, T7, T8, P3,
P4, P7, P8, Ol, and O2 electrodes using the 10/20 sys-
tem25. No-rhythm data, without a task for the subject, were
collected before the actual experiment began. Data were
filtered between 0.3 — 100 Hz and captured at a 500 Hz
sample rate using the Neuroscan 4.1 Acquire program. A
ground electrode was positioned on the forehead and a ref-
erence electrode on the left mastoid. The impedance was
kept below 3kQ. The horizontal and vertical EOGs were
also recorded and filtered between 0.3 — 30 Hz. Synchroni-
zation markers embedded in the MIDI stimulus stream were
routed to the Neuroscan equipment, and captured along with
the EEG data.

2.2 Data processing

The files with EEG and marker data were converted to
ASCII format using CNTTOASC. These files were sliced
into individual response-files (with a lead of 100 ms before
the start of the stimulus and a tail of one second after the last
note onset) using POCO, and downsampled to 250 Hz after
band-pass filtering in octaves between 2 — 32 Hz using
Matlab. A third order Butterworth filter was used, passing
twice along the data in both directions to prevent phase-
shifts, thereby effectively filtering with a sixth-order filter.
For artifact removal, sections were rejected off-line from the
raw EEG, whenever in a time-window of 250 ms in one
channel any voltage exceeded 50 pV. Similarly, for the eye
movement artifacts data from all channels were rejected
when a voltage in the vertical or horizontal EOG exceeded
50 pV. Using Fast-ICA the signals from the electrodes are
un-mixed using a Tanh non-linearity. Using this method,
artifact rejection becomes superfluous [Jung e.a. 2000].



Preprocessing Perceived Imagined
Correctly Significance Correctly Significance
Classified | (Chance =.2) Classified (Chance =.2)
Artifact Rejection 421 <.0001 .208 -
Artifact Rejection and 462 <.0001 178 -
Spectral Separation
Spectral Separation and 484 <.0001 .243 <.005
Independent Components

Table 1. Proportion correctly classified perceived and imagined rhythms

2.3 Analysis

For all calculations a distinction was made between test and
training data sets, based on the measurement sessions, and
mean results are reported. Classification was based on cor-
relation between single trial data and the averaged templates
and was conducted in stages. Correlations between the sin-
gle trial and all average templates were calculated on the
time interval from .250 to 3 s for each frequency band.
Separate detectors were defined for each rhythm by logistic
regression in JMP on the distribution of correlations over
the scalp. A next logistic regression stage combined the in-
formation of the spectral bands. The detectors were jointly
optimized for all rhythms. Every detector was trained only
on its corresponding single trials (for a YES output) and on
the no-rhythm trials (for a NO output). The resulting detec-
tion probabilities were combined in a discriminant analysis
(again in JMP), this time excluding the no-rhythm data,
yielding one of the five pattern classes plus their probabili-
ties as identification result. Identification counts were col-
lected into confusion matrices that were subsequently col-
lapsed into correctness scores.

3 Results

Identification of imagined rhythm is hard; yet the success
rate using ICA (.243, as compared to the .2 chance-level)
is highly significant as Table 1 shows. Classifying per-
ceived rhythm is much easier, but also here the ICA
method proves an improvement demonstrating the effec-
tiveness of its concentration of information. As another
test, ICA un-mixing was performed on clean data, with
artifact rejection. With this additional preprocessing it
performs about equally well for imagery (.241) and only
slightly better for the perception task (.498) demonstrat-
ing the effective removal of artifact information from the
relevant channels.

Though highly significant, the size of the effect is still
quite small. An improvement of identification success is

possible by considering repeatedly perceived or imagined
patterns, combining the data either pre-classification, by
averaging over a small set of trials, or post-classification,
e.g. by majority vote.

The random pattern, though not difficult to identify as
perceived pattern, is almost impossible to identify cor-
rectly when imagined. Apart from the difficulty for the
subject to imagine this rhythm in a constant tempo, it
may leave a less clear trace in the ERP because it does
not induce a strong metric expectation. Note that also the
joint optimization of the detectors for all patterns may be
to blame for the poor result in this case.

Allowing the classifier to deny classification in case its
confidence (the expected probability that the trials indeed
stems from the identified pattern) is below a threshold
can also boost the number of correct classifications. For
perception the classification reaches perfection at a
threshold of about .5, in which case about 40% of the
trials are rejected.

4 Discussion

Because for rhythm the temporal structure of a pattern
coincides with its content, it is an excellent domain for
this kind of research. Although the design of the method
easily allows for this, the scaling of the behavior of the
method to larger sets of patterns is still unknown. Fur-
thermore what these results tell us about the ongoing
processes of rhythm perception is not yet clear [Desain
e.a., 1998]. However, as the creation of expectancy (and
its violation or confirmation) seems to be the source of
the ERP signals —instead of the temporal surface struc-
ture of the patterns—, the same methods might be useful
for other domains, like the processing of melody, har-
mony or language utterances [Janata, 2001; Suppes, Han
& Lu, 1998]. This will be the focus of further research.
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