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CLOSe to the Edge? Advanced Object-Oriented
Techniques in the Representation of Musical Knowledge*

Peter Desain and Henkjan Honing

ABSTRACT

The modeling of knowledge about musical expression asks for quite some flexibility
during the design process and for the availability of high-level abstractions to
represent successfully the complex concepts and their interactions in this domain.
One would expect, because of the enthusiastic claims made in the literature on
object-oriented programming, that such an approach would be ideal for this task.
This paper describes some aspects of the Common Lisp Object System (CLOS), a
modern object-oriented language that indeed provides some advanced constructs that
proved useful in the design and maintenance of a complex system for the manipu-
lation of expression in music. However, some of the mechanisms should be used
with care to stay far from the point beyond which programs become too complex
to grasp.

BACKGROUND

Since the appearance of the first experimental versions, object-oriented languages
have found widespread application in computer music and music representation
systems (see Pope 1991). They have matured and grown into standardized systems
(for instance, Smalltalk, C++ and the Common Lisp Object System (CLOS)), and
seem to support sophisticated mechanisms for abstraction. But still it is ques-
tionable whether these constructs are all that is necessary in dealing with the
difficult problems of knowledge representation.

It is certain that programming languages of the distant future will not
resemble those in use today. And almost certainly, the people who use
abstractions in those languages will have difficulty categorizing as
abstractions the mechanisms we use today, so primitive and crude will these
mechanisms seem. (Gabriel & Steele 1990.)

* Sound examples of the Expresso system are available in the JNMR Electronic Appendix (EA),
which can be found on the WWW at http://www.swets.nl/jnmr/jnmr.html
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2 P. DESAIN AND H. HONING

In this paper we will discuss some abstraction mechanisms of a contemporary
object-oriented programming language (CLOS, an extension of Common Lisp), and
try to indicate the strengths and shortcomings of some of the available facilities
with respect to their use in the representation of musical knowledge. We will
investigate in how far some mechanisms should be used carefully to stay far from
the point beyond which programs become too complex to grasp.

The actual modeling of a particular aspect of musical knowledge asks for quite
some flexibility during the design process (for example, ease of changing the type
relations or modifying the control structure). We need facilities that allow for an
explorative construction of modular microworlds that concentrate on one aspect of
the musical knowledge, and for a smooth combination of these microworlds into
a complete system (Honing 1993). One would expect, because of the enthusiastic
claims made in the literature on object-oriented programming, that such an
approach is ideal for the task. But although some modern mechanisms of these
languages support this flexibility and contribute to the flexibility and expressive
power, some problems remain.

We will describe these issues using an example of an object-oriented system in
the music domain: a calculus for expression in music performance. First, the basic
problems in the study and modeling of this domain will be presented.

EXPRESSION IN MUSIC

The expressive aspects of music are those measurable quantities in a performance
that cannot be deduced from the information in a musical score — it is the
performer's interpretation of that raw material. The term comprises subtle
variations in tempo (the rubato that is most obvious in the slowing down at the end
of a phrase), the use of timing (the way a note can be accented by delaying its
onset by a small amount of time), small accents in loudness, and asynchronies in
the onsets of the notes that form a chord (e.g., by making the melodic voice stand
out more clearly by playing it slightly ahead of the accompaniment). We will not
use the term here in the sense that music is played with expression to induce an
affect in the listener, an emotion or feeling. These feelings are considered to be
communicated somehow by the purely syntactic notion of expression, which is
much easier to open up to scientific investigation.

In most of the research on music cognition, this syntactic notion of expression
is defined as the deviations of a performance with respect to the score or a
mechanical performance. This numerical material, e.g., tempo profiles, can be
analyzed and compared over different performances (see, for example, Clarke
1988). In most current music software expressive timing is defined as well as the
note-to-note tempo or timing deviation from the score, either in the form of a
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CLOSE TO THE EDGE 3

separate stream of tempo information (as used, for instance, in commercial
software for controlling synthesizers), or as a set of interpretation algorithms acting
on a score (see, for example, Anderson & Kuivila 1991). However, from a
perceptual point of view, there is something awkward about this definition since
a listener can perceive and appreciate expression in a performance without
knowing the score.

Imagine you are listening to a radio program playing some new music for
piano. You have never heard the piece before. Suppose you have very little
experience in music making yourself, and do not know any music theory. Maybe
to your own surprise, you are capable of deriving some of the musical structure.
You are able to distinguish how many voices are played at the same time and
where the musical phrases end. You can hear an error in the performance and
distinguish it from deviations that were made on purpose. You can identify what
is expressive timing (rubato, swing, phrasing) and what is rhythmical structure (the
note values that might be notated in a score). You may be able to judge whether
it is an amateur or professional pianist, and some might even be able to recognize
the pianist by his/her way of playing. Clearly, a lot is communicated only by
means of the performance attributes of each piano note; its time of onset, its time
of offset, and its loudness, and it is all communicated effectively, without the
listener needing a score to pick up the information.

In our work we therefore looked for an alternative description of the notion of
expression, based on performance information and a structural description of the
music performed. We define expression within a unit as the deviations of its parts
with respect to the norm set by the unit itself (Desain & Honing 1991). Using this
intrinsic definition, expression can be extracted from the performance data, taking
more global measurements as a reference for local ones, ignoring a possible score.
An example might make this more clear. Let's take, for instance, a metrical
hierarchy of bars and beats; the expressive tempo within a bar can be defined as
the pattern of deviations from the global bar tempo generated by the tempo of each
beat. Or, take the loudness of the individual notes of a chord; the dynamic
expression within a chord can be defined as the set of deviations from the chord's
mean loudness by the individual notes. Thus, the structural description of the piece
of music becomes central; it establishes the units which will act as a reference and
determines its subunits that will act as atomic parts whose internal detail will be
ignored.

Next to its use in the study of expression itself, an important motivation for this
work is the practical applicability of it in systems for computer music. Especially
the music editors and sequencer programs that are commercially available
nowadays are in need of better ways to treat musical information in musical ways.
It is illustrative that structural and expressive notions from the everyday vocabulary
of composers and musicians (like phrasing, ornamentation, agogic accents) have
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4 P. DESAIN AND H. HONING

no corresponding constructs in current software, except maybe in notation
programs that can handle them as annotations of the score. Expressive timing
should not be considered a nasty feature of performed music, as it is in current
multitrack recording techniques where tempo, timing and synchronization are
treated as technical problems. Given a richer and more structured (knowledge)
representation of music than the ones in use today (e.g., IMA 1983), expression
can again be regarded as an integral quality of performed music.

EXPRESSO

The Expresso system — a calculus for expressive timing — will serve as a concrete
example of an object-oriented system in the music domain. Expresso is a
representational system to describe music performances not only statically, but also
in a transformable way. In this system it is possible, for instance, to modify the
phrasing or articulation of a represented performance in musical and perceptually
plausible ways. Basic distinctions in musical knowledge and perceptual processing
are represented by a prototypical set of types of temporal structure and of
expression, and their behavior under transformation; a specific transformation on
a representation of a performance should be close to a real performance that
underwent a similar transformation. For example, a transformation that changes the
overall tempo should not just scale all note durations, but should reflect what a
human performer would do when given the instruction to play at a higher tempo,
i.e., adapt the depth of rubato at different levels, leave some ornaments invariant,
and adjust the articulation. An I/O diagram of Expresso is shown in Fig. 1. The

structural
description

performance

EXPRESSO
(calculus and user interface)

quantized
durations

CALCULUS

i

transformed
performance

transformation

Fig. 1. Input/output diagram of Expresso.
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CLOSE TO THE EDGE 5

input consists of a musical performance in MIDI format, a stream of note-on and
note-off messages, and one or more structural descriptions (quantized durations are
also needed as input, but they can be derived directly from the performance). The
output is a modified performance given a certain transformation. A more complete
description of the system is given in Honing (1992) and Desain and Honing (1991)
which also includes a full code listing.

The underlying data representation makes a distinction between basic musical
objects and structured musical objects. Basic musical objects are events that
"carry" expression (for instance, notes), with attributes that should be directly
measurable from the recorded performance data, like a note's onset or loudness.
Structured musical objects assign a particular kind of temporal structure to a group
or collection of musical objects.

This set of structural concepts mirrors some basic distinctions in the perception
of temporal structure, for instance, between successive temporal processes that deal
with events occurring one after another, and simultaneous temporal processes, that
handle events occurring around the same time. With respect to expressive timing,
events of the first type might use rubato as expressive means — the change of
tempo over the sequence. Events of the second type might use "chord-spread" or
asynchrony between voices as expressive means, both of a more timbrai nature. By
assigning a structural type to a collection of musical objects, their behavior under
transformation is uniquely determined. For example, when a collection of notes is
described as a Sequential structure it will be associated with tempo, scaling their
timing in an logarithmic way. Although the precise timing may change, the sequen-
tial order will be fixed and cannot be changed as a result of a transformation.
When the same collection of notes is described as a Parallel structure, a chord,
they will be associated with asynchrony, scaling their timing in a linear way. In
this case the order of their onsets may be changed.

Another distinction that was made is an ornamental quality, another possible
relation between two musical objects. Ornaments in music, like a grace note (a
short note played just before a more important one) behave differently. For
example, in playing a piece in a higher overall tempo it may well be that the
duration of a grace note is not affected; it keeps its original duration (Desain &
Honing 1994). Ornaments can be divided in acciaccatura, so called timeless
ornaments, and appoggiatura, ornaments that take time and can have a relatively
important role in e.g., the structure of melody. This specific behavior under
transformation can be compared to a PostScript description of a picture. In this
format some graphical data scales proportionally with the size of the final output,
and others, like the width of hairlines, does not.

In Fig. 2 a score in common music notation is given. These are the last bars of
a Beethoven composition for piano, slightly adapted such that all types of temporal
structure can be illustrated with it. Figure 3 shows two graphical representations
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P. DESAIN AND H. HONING

i

I
Fig. 2. Score of the last bars of the theme of six variations over the duet Nel corpiù non

mi sento by Ludwig van Beethoven.

of the structure of the same piece: a metrical and a voice analysis (other analyses
are of course possible). They are presented in the form of boxes for each of the
notes and their structural groupings. Enclosing boxes represent the part-of relation
between part and whole, where compound objects can have different temporal
(successive or simultaneous) and ornamental qualities (multilateral or collateral).
The possible values of these two basic qualities can be combined orthogonal to
give four kinds of compound structural units (Sequential, Parallel, ACCIAccatura
and APPOGgiatura) which deal with representing a large class of musical concepts

P fragment
Sm.lody

Fig. 3. Two possible structural descriptions of the score in Fig. 2, (top) structural
description of the metrical hierarchy, and (bottom) structural description of the
voices in that piece.
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CLOSE TO THE EDGE 7

naturally. The two grace notes in the score in Fig. 2 are classified as grace notes
of two different types (acciaccatura and appoggiatura) in the structural descriptions
in Fig. 3.

Unfortunately, expressive parameters in music (like timing or dynamics) cannot
be divided into small and elegant sets of orthogonal types. There is always some
kind of interaction — one type of expression in a representation of a performance
cannot be changed without influencing the other. For example, shifting the onsets
of a collection of notes will interact with the expression through the articulation
(i.e., the interval between the offset of one note, and the onset of another). One of
the problems in the design of the calculus was to factorize the knowledge involved
and to make these kind of interactions explicit and controllable. Below we will
describe some of the mechanisms that CLOS provides, and that turned out to be
useful in the development of the Expresso system. (We assume that the reader has
some familiarity with object-oriented languages and related terminology.)

COMMON LISP OBJECT SYSTEM (CLOS)

The central concepts of CLOS are classes, instances, generic functions and
methods (see Steele 1990). The language elegantly supports the use of an
integrated functional- and object-oriented programming style in one language (see
Gabriel, White & Bobrow 1991), and advanced object-oriented constructs like
multiple and mixin inheritance, multimethods and method combination. Its
definition includes a metaobject protocol (Kiczales, Rivières & Bobrow 1991) that
defines the full semantics of CLOS in CLOS itself. This is not just a theoretical
exercise, but enables the programmer to elegantly extend or change the language
itself by modifying the metaobjects that implement the concepts like classes, slots
and generic functions.

CLOS is also the language of choice in some composition systems for computer
music, such as Common Music (Taube 1991).

USING AN OBJECT-ORIENTED STYLE IN REPRESENTING
MUSICAL KNOWLEDGE

Multiple inheritance, as used for modeling musical objects

In general, it is claimed that simple inheritance schemes are too rigid for a
complex representational problem (like the design of user-interfaces or operating
systems). In single inheritance a class can only inherit behavior from one
superclass.
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g P. DESAIN AND H. HONING

In multiple inheritance it is not only allowed for a class to inherit from a set
of direct superclasses (a perfectly neat way to factor knowledge), but they may in
turn inherit (possibly indirectly) from the same class. This supports different kinds
of class organizations in the form of a general directed a-cyclic graph, whereas
single inheritance is restricted to tree-like hierarchies only.

While single inheritance sufficed to model the basic musical objects in the
Expresso system, multiple inheritance was used in the first design to organize the
structured (compound) musical objects (see Fig. 4).

For these musical objects there were two orthogonal aspects to model. The first
is the time-order between the parts (successive vs. simultaneous). The second is an
ornamental relation between parts that may or may not exist (collateral vs.
multilateral). This indicated whether all elements are of equal importance or
whether they have a dependence relationship, like in the case of a grace note with
an ordinary note. Concrete (instantiable) classes were defined for each of the four
combinations, so a sequential structure inherits behavior from the successive and
from the multilateral class, which both are structured musical objects.

One can see the complication that may arise when the same method is defined
in the different classes: inheritance may work via different paths and this freedom

•Imultaneous colataral •uecMtlvi multilateral

| I ahmet du»

] instantUbk clau

- 1S-A, inherits from

Fig. 4. Classes of musical objects and their interrelations.
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CLOSE TO THE EDGE 9

calls for the need of a consistent algorithm to calculate the superclass that a
specific method is inherited from. Although this algorithm is well defined in
CLOS, and the factoring of behavior into classes as presented for Expresso works
well, it is in general not wise to program too complex class relations. This is
because different methods all have to make use of the same structure of classes for
specifying their inheritance. Furthermore, when one relies too heavily on the
inheritance mechanism, for example, to decide which method shadows which, the
order in which direct superclasses are specified in the class definition becomes
very important (and may need to be different for different methods too). So in
general, it is wise to put some extra effort in deciding to which class a particular
behavior belongs. In other words, when knowledge is properly factored there is
less need for complex inheritance schemes.

Mixin inheritance, as used in modeling types of expression

The types of expression available to a performer constitute a rich world — even
when the basic note objects only have a few parameters like in keyboard music
(e.g., onset, offset and loudness). Based on these few note attributes, many types
of expression can be distinguished: articulation (the amount of sounding overlap
between notes in a sequence), chord asynchrony (the spread of the actual onset
times of notes that belong to the same chord), voice asynchrony (e.g., the way in
which melody and accompaniment are played out of phase), expressive tempo
fluctuations (e.g., rubato), dynamic contour (the sequential patterns of loudness
linked to, e.g., the metric structure of bars and beats) and dynamic balance (e.g.,
the distribution of loudness over melody and accompaniment or the different notes
in a chord). The richness of this domain is a result of the interplay between
attributes of notes and the structural musical objects that form the context of the
note. However, the types of expression classes needed to describe the intrinsic
expressive aspects of isolated notes are easy to deal with. The data structures, used
in Expresso to represent expression, are empty; they contain no data, which might
be surprising. But because the classes of these objects form part of an elaborate
inheritance network, the expression objects themselves function as hooks for
specific procedural knowledge controlling method dispatching, for example,
indicating which method has to be used for modifying a certain type of expression.

The type of inheritance used for modeling expression is mixin inheritance. It
allows a class to be used as an optional modifier of the behavior of a class that
already functions well on its own. A mixin is an abstract class, it will never be
used on its own, but always in combination with some other class to which it adds
structure and behavior. Typically, this customization is supported in before, after
and around methods. A mixin class is designed not to interfere with other aspects
of behavior, apart from the aspect of the behavior that it affects. Thus often the
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10 P. DESAIN AND H. HONING

customization is expressed in the additional code, no primary methods are
shadowed or rewritten. The design of a collection of mixin classes should be as an
orthogonal-independent set, such that each can be included or left out at will when
mixing a new class.

Mixin inheritance proved an elegant mechanism to model interactions between
related types of expression. For example, a k e e p - a r t i c u l a t i o n mixin
provides additional behavior to o n s e t - t i m i n g expression. When the onset
timing is affected, for instance by a manipulation of the rubato, the offsets are
moved consistently to maintain the same sense of articulation and, of course, the
a r t i c u l a t i o n class itself is a choice among possible alternatives. In Fig. 5, a
part of the inheritance structure is shown, using single inheritance for expression
and mixin inheritance to add offset consistency as an option to o n s e t - t i m i n g .

Multimethods, as used in extracting expression from musical objects

A method will be evoked only on arguments that satisfy its parameter specializers;
the method dispatch takes care of selecting the appropriate method depending on
the classes of its arguments. In some object-oriented languages (like Smalltalk and
older object-oriented Lisp extensions), a method can specialize on one object only.
This is congruent with a message-passing paradigm. But often when a function has
more arguments it behaves more or less symmetrical with respect to them, and
deciding which argument to send the message seems arbitrary. For instance, it
makes no sense to decide if it is better to ask a musical object to extract a certain
type of expression or to ask a musical expression to consider a certain musical
object, and if one is forced to make that choice (as in the message passing

expression

keep
articulation

offeet tfmlh» lou<k}«s*

abstract class

J instantiate class

mixin class

IS-A, inherits from

••»- IS-A (mixin), may inherit from

Fig. 5. Simplified expression type hierarchy for timing and loudness expression.
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CLOSE TO THE EDGE 11

paradigm) unnatural programs result. It is much more natural to be able to write
a method for extracting expression that captures only a combination of a specific
temporal structure and a specific expression type. In CLOS these are available as
so-called multimethods, functions that are polymorphic in more than one argument.

In Expresso multimethods are used to extract expression, depending on both the
type of musical object (note, pause, S, P, etc.) and the type of expression (onset-
timing, articulation or loudness). The method g e t - e x p r e s s i o n for the musical
object pause returns nothing, for every type of expression, because a rest can carry
no expression in itself. Furthermore, ornaments (inheriting from the class
c o l l a t e r a l ) have a specific method that extracts all expression from its main
component. The g e t - e x p r e s s i o n method for o n s e t - t i m i n g expression for
a sequential structure is the onset of its first component, whereas the onset of a
parallel structure is the onset of the component that happens to be first in time.
Finally, for loudness expression the amplitude of parallel voices is summed,
whereas for sequential structures the profiles are averaged, and a note can return
its amplitude directly. In this way a condense description of the calculation of
expression profiles, and how that process is determined by both the type of a
musical object and the type of expression can be achieved using multimethods.

A similar set can be defined to actually set the expression of musical objects.
The generic function s e t - e x p r e s s i o n is specialized for a particular type of
musical object, a type of expression and an expression map (a data structure
containing a description of expression with a class organization similar to musical
objects). The different methods apply the appropriate change to the particular type
of object, propagating the changes through a possibly complex structure of nested
S, P, ACCIA and APPOG objects. Thus setting the onset timing of a sequential
structure will propagate changes to its components in an interpolated way, and
setting it for a parallel structure will truncate changes of its components if they are
in danger of moving outside the time interval of the enclosing structure. The
changes in timing for ornaments also have their own specified behavior.

Method combination, as used to maintain consistency between types of
expression

In CLOS, a method can be composed from parts through a technique called
declarative method combination (as opposed to procedural method combination,
used in, for example, Smalltalk or Beta). In method combination, one can control
how partial descriptions of behavior of one method for more classes are combined
to allow for more complex combinations than mere shadowing. In the standard
method combination all so-called before, after and around methods are assembled
in their proper order and wrapped around the main or primary method. Any
behavior that can be conceptualized as a simple side effect to take place before or
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12 P. DES AIN AND H. HONING

after some main behavior, can be added as before or after method. The source of
the primary method need not be available — also predefined behavior, for example
of the system itself, can be modified in this way. A modification that needs the
result of the old primary method can obtain it by using c a l l - n e x t - m e t h o d in
an around method.

In Expresso a g e t - e x p r è s s i o n method for the multilateral object is defined
that just collects the expression of its components in a list. The appropriate around
method defined for Sequential and Parallel structures then extract the expression
of the whole, from the list of expression values from the parts. In that way
knowledge about multilateral objects (all parts are equally important and may in
principle contribute to the expression) and about temporal order and type of
expression (the onset timing of a parallel structure is the onset of its part that
happens to be earliest) can be split and described in the appropriate places,
avoiding duplication of code.

This distribution of control in standard method combination has a clean
declarative style (using before, after and around methods). However, it is allowed
to use c a l l - n e x t - m e t h o d in primary methods too. This procedural style blurs
the flow of control and is more difficult to debug, because the programmer has to
search through the body of all primary methods to check whether it contains a
c a l l - n e x t - m e t h o d . In general, it is better to restrict the use of c a l l - n e x t -
method to around methods.

Besides the standard method combinations, there are built-in method combina-
tions that define other ways of combining primary methods (like appending or
adding their results), instead of the standard shadowing. Furthermore, there are
fully programmable ways for users to add their own way of method combination.

METAOBJECT PROTOCOL

In CLOS it is possible to extend the language using CLOS itself because all
language constructs (like classes, methods and inheritance mechanisms) are
accessible as CLOS objects in a metacircular manner (see Kiczales, Rivières &
Bobrow 1991). In that way one can, for example, customize how an object is
instantiated from a class. This can be used in programming the expression objects.
These objects have no slots, they are empty objects and are only used for
dispatching the different methods. This means that the creation of new fresh
instances of the expression class is not needed more than once, since all instances
will be the same. A resource of these instances suffices to prevent the creation of
redundant instances. Of course this could be programmed, but one would like to
modify the make-instance method such that this can be hidden for the programmer;
empty objects seem to be created in the same way as any other object, only in
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CLOSE TO THE EDGE 13

creating new ones an old instance is returned whenever it is available. Because this
entails a calculation on a class, it is not possible to implement this in CLOS
directly on the programming-level interface. But since a CLOS class is like any
CLOS object, and each class is an instance of a metaclass, a new metaclass can
easily be defined, inheriting all behavior of the standard metaclass, but adding
some specific behavior to make-instance. In this way constructs that are part of the
language definition itself (like the way in which new objects are created) can still
be redefined using the metaobject protocol. (Note that the metaobject protocol is
in the process of standardization and is not yet fully supported in some Common
Lisp implementations.)

MAINTENANCE AND CHANGE

The process of factorizing structure and associated behavior is often not easy. One
has to go through several stages of redesign to end up with a stable set of concepts
and their relations that naturally reflect the domain modeled. This redesign process
is not always well supported by object-oriented languages and their development
environments. For instance, to change a solution using inheritance (is-a links) into
one using links between instances {part-of links) is a cumbersome job in every
object-oriented language.

Furthermore, while is-a relations are supported quite well, one can identify a
lack of support for part-of relations. Often simple concepts like back pointers or
mapping constructs that are used heavily in building object networks have to be
defined procedurally by the programmer.

But even in the domain of inheritance, some central facilities are lacking. While
the programmer might design neat sets of abstract classes and mixins, there is, for
example, no support for expressing and enforcing their correct use, like the order
in which classes have to be used as superclasses or the methods that have to be
defined to implement a new mixin facility of a certain kind.

With respect to CLOS, some solutions to these problems can be found through
the availability of the metaobject protocol and the software development protocol
(see Gabriel, White & Bobrow 1991) that further standardize the implementation
of the language, and gives the programmer access to the implementation of the
language itself.

CONCLUSION

In this paper, we briefly touched some relatively new aspects of object-oriented
programming, as available in CLOS, and described the use we made of them in the
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14 P. DES AIN AND H. HONING

design of the Expresso system. Normally, object-oriented languages are considered

useful in the design of large, multifaceted systems. But also in the domain of

formalizing and representing musical knowledge, where relatively small aspects of

that knowledge have to be explored, modeled and combined, an object-oriented

style can be of use. However, we found that while part of the problems are

resolved by some important new language constructs (like multiple and mixing

inheritance, multimethods and method combination), the enthusiastic claims are not

completely fulfilled, most notably in the relatively weak support of the factoriza-

tion process itself.

Modeling musical knowledge, once again, turns out to be a good domain of

exploring the expressive power of new tools and formalisms of computer science.

The work revealed the potential as well as the limits of advanced object-oriented

programming. In future work we plan to elaborate on this and actively investigate

for which abstractions are best suited for the use in music representation and

programming languages for music.
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