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Time–frequency representation of musical rhythm by
continuous wavelets

Leigh M. Smith* and Henkjan Honing

Music Cognition Group/ILLC, Universiteit van Amsterdam, Plantage Muidergracht 24,
1018TV, The Netherlands

A method is described that exhaustively represents the periodicities created by a musical rhythm. The
continuous wavelet transform is used to decompose an interval representation of a musical rhythm into a
hierarchy of short-term frequencies. This reveals the temporal relationships between events over multiple
time-scales, including metrical structure and expressive timing. The analytical method is demonstrated on
a number of typical rhythmic examples. It is shown to make explicit periodicities in musical rhythm that
correspond to cognitively salient ‘rhythmic strata’ such as the tactus. Rubato, including accelerandos and
ritardandos, are represented as temporal modulations of single rhythmic figures, instead of timing noise.
These time varying frequency components are termed ridges in the time–frequency plane. The continuous
wavelet transform is a general invertible transform and does not exclusively represent rhythmic signals
alone. This clarifies the distinction between what perceptual mechanisms a pulse tracker must model,
compared to what information any pulse induction process is capable of revealing directly from the signal
representation of the rhythm. A pulse tracker is consequently modelled as a selection process, choosing the
most salient time–frequency ridges to use as the tactus. This set of selected ridges is then used to compute
an accompaniment rhythm by inverting the wavelet transform of a modified magnitude and original phase
back to the time domain.

Keywords: rhythm; rhythmic strata; expressive timing; continuous wavelet transform; time–frequency
analysis; beat tracking

MCS/CCS/AMS Classification/CR Category numbers: J.5, H.1.2

1. Introduction

Despite a long history of computational modelling of musical rhythm [1,2], the performance of
these models has yet to match human performance. Humans can quickly and accurately interpret
rhythmic structure, and can do so very flexibly, for example, they can easily distinguish between
rhythmic, tempo and timing changes [3]. What are the representations and relevant features that
humans so successfully use to interpret rhythm? We investigate these questions using a com-
putational representation of musical rhythm. This demonstrates how a pattern of time intervals
can reveal a structure that informs the understanding of human cognition. We aim to mimic the
overall behaviour of human rhythm cognition, as a precursor to future attempts to apportion and
separately model each perceptual process involved.
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82 L.M. Smith and H. Honing

A musical rhythm can be distinguished, memorized and reproduced independently of the
music’s original pitch and timbre. Even using very short impulse-like clicks, a listener can recog-
nize a familiar rhythm, or comprehend and tap along with an unfamiliar rhythm. The rhythm is
thus described from the inter-onset intervals (IOI’s) between events alone, that is, the temporal
structure.

The rhythmic interpretation of those temporal patterns has received considerable research,
notable summaries include Fraisse [4], Clarke [5] and London [6].Yeston [7] characterized musi-
cal time as consisting of a hierarchy of time periods spanning individual notes, bars and phrases,
terming these periods ‘rhythmic strata’. Lerdahl and Jackendoff [8] made the important distinction
between the process of grouping of events across time, and the induction of the musical meter
that arises from the regular re-occurrence of accented events. These researchers both noted the
role of tactus, constituting the most prominent musical pulse rate and phase that is induced by the
listener. The tactus typically appears as the rate and time points that listeners will tap to (typically
around 600 ms [4]) when hearing a musical rhythm.

Such attending to a musical rhythm formed from IOIs is proposed by Jones [9] to use two
strategies, future-oriented and ‘analytic’ processes. These processes project expectancies forward
in time, and retrospectively assess experienced (i.e. heard) events, respectively. Both strategies
are argued to occur simultaneously, and to be judged with respect to the hierarchical time lev-
els established by the rhythm. The perception of a rhythmic pulse and its ongoing attending
can be characterized as composed of two resonant processes. These consist of a ‘bottom-up’
beat induction process, and a schematic expectation process providing ‘top-down’ mediation of
the perception of new events [10,11]. Gouyon and Dixon [12] illustrate and characterize com-
putational models according to a similar machine learning-oriented architecture, describing the
top-down process as pulse tracking.

This tracking task has remained an unsolved research problem, owing in part to the effect
of expressive timing. Musicians purposefully use expressive timing to emphasize the structural
aspects of the piece, such as the metrical and phrase structure [13]. A representation of musical
rhythm must therefore account for the establishment of rhythmic hierarchy, the induction of pulse,
and the role and effect of expressive timing. In this paper, we describe a representation of musical
rhythm using an established transformation, the continuous wavelet transform, applied to the
inter-onset timing of events. This representation is demonstrated to make explicit the rhythmic
hierarchy and expressive timing. Furthermore, it allows a number of beat tracking methods to be
applied to determine the tactus implicit in the rhythmic signal.

1.1. Rhythm signals

Considerable research has been directed at designing models of both pulse induction and tracking
processes towards the final goal of producing useful and robust models of musical time. Existing
approaches are reviewed in detail in online Supplement 1. Common problems confronted and
addressed in a diverse manner by these approaches are the representation of temporal context,
order and hierarchy, and the role of expressive timing and tempo within the existing rhythmic
structure.

Since musical rhythm can be induced from mere clicks alone, a rhythmic function for analysis
is created by representing the time of each onset as a unit impulse function. The rhythm function
for a piece of music is therefore a train of impulses with intervals matching the IOI between
onsets. A pulse-train function can be seen to be a minimal, or critical sampling of, the auditory
amplitude envelope at the lowest sampling frequency that still accurately represents the rhythm
function. This yields one sample at the point in time at which each musical event becomes audible
to the listener. This is an onset-based representation of rhythm, and is typically recovered by a
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detection algorithm operating on the signal energy of the acoustic signal, |y|2. This is effectively
a rectification of the audio signal to deconvolve the amplitude envelope from the auditory carrier
signal [14,15]. Alternatively, the onset times are obtained by transducing a musician’s actions
on a sensing instrument (e.g. MIDI). This is distinguished by Gouyon and Dixon [12] from a
time-domain frame based system, which aims to determine the rhythmic signal directly from the
auditory signal. However in practice, systems must rectify in order to deconvolve the rhythm from
the auditory signal.

The use of the continuous wavelet transform as a means of analysing rhythms consisting of an
impulse train of onsets was originally reported in Smith [16] and Smith and Kovesi [17]. The output
of the transform is similar to Todd’s rhythmogram [14], but more detailed. The representation
reveals a hierarchy of rhythmic strata and the time of events by using a wavelet that has the best
combined frequency and time resolution. Such bottom-up data-oriented approaches, including the
multiresolution method described in this paper, do not fully account for human rhythm cognition.
Rhythm perception is additionally influenced in a top-down manner by the listener’s memory
developed by a combination of explicit training and learning through exposure. A goal of this
paper is to clarify the information that is inherent (i.e. retrievable) in the temporal structure of
a musical rhythm. This aims to establish a base-line measure, to evaluate the contribution of
different models of musical time before considering the effect of top-down processing. In short,
the intention of this paper is to demonstrate how much structure can be retrieved from a sparse
impulse representation of a rhythmic signal.

1.2. Proposed method

The paper is organized as follows: the analytical technique of a continuous wavelet transform is
reviewed in Section 2. The application of this transform to musical rhythm to produce a rhythmic
hierarchy is described in Section 3. Musical rhythm is described in terms of signal processing
theory, and distinguished from the auditory spectrum in Sections 3.1 and 3.2. A simplified schema
model is used to determine the tactus (foot tapping rate) in Section 3.3. This extracted tactus is
then used to compute a beat tracking rhythm to accompany the original rhythm in Section 3.4.
The analysis and representation of rhythms with expressive timing is demonstrated in Section 4.

2. The continuous wavelet transform

Expressive timing, agogic, dynamic and other objective accents produce complex, frequency
and amplitude varying rhythmic signals that require a non-stationary signal analysis technique.
Analytical wavelets are well suited to this task. The following section is a review of the continuous
wavelet transform, further detail is provided in Smith [18].

Wavelet theory has historical roots in the analysis of time varying signals, the principle being
to decompose a one-dimensional signal s(t) at time t , into a non-unique two-dimensional time–
frequency distribution Ws(t, f ), representing frequencies changing over time [19,20].

Earlier signal analysis approaches have used the short-term Fourier transform (STFT), a time
windowed version that decomposes a signal into harmonically related basis functions composed
of weighted complex exponentials. The STFT is

Fs(t, f ) =
∫ ∞

−∞
s(τ ) × h̄(τ − t) × e−i2πf τ dτ ,

where h̄(t) is the complex conjugate of the window function. Significantly, the window function’s
time scale is independent of f . Any partial of the signal that changes in frequency over the time
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84 L.M. Smith and H. Honing

extent of the analysis window will have its energy distributed across the spectral domain. This
makes short-term changes within the window not resolvable by the STFT.

In contrast, the continuous wavelet transform (CWT) [20–22], decomposes the signal onto
scaled and translated versions of a mother wavelet or reproducing kernel basis g(t),

Ws(b, a) = 1√
a

∫ ∞

−∞
s(τ ) × ḡ

(
τ − b

a

)
dτ , a > 0, (1)

where a is the scale parameter and b is the translation parameter. The scale parameter controls the
dilation of the window function, effectively stretching the window geometrically over time. The
translation parameter centres the window in the time domain. Each of the Ws(b, a) coefficients
weight the contribution of each basis function to compose s(t). The geometric scale gives the
wavelet transform a ‘zooming’ capability over a logarithmic frequency range, such that high
frequencies (small values of a) are localized by the window over short time scales, and low
frequencies (large values of a) are dilated over longer time scales [23]. This forms an influence
cone [24] that has a time interval, for each scale and translation, between [atl + b; atr + b] for a
mother wavelet with time support over the interval [tl, tr ].

Resynthesis from the transform domain back to the time domain signal is obtained by

s(t) = 1

cg

× 1√
a

∫ ∞

−∞

∫ ∞

−∞
Ws(b, a) × g

(
t − b

a

)
da db

a2
, (2)

where the constant cg is set according to the mother wavelet chosen:

cg =
∫ ∞

−∞
|ĝ(ω)|2

|ω| dω < ∞, (3)

where ĝ is the Fourier transform of the mother wavelet.
The CWT indicated in Equation (1) is a scaled filter from a constant relative bandwidth

(constant-Q, Equation 3) filter bank. A discrete version of the wavelet transform is used for
implementation, so the scale parameter a must be discretized with a sufficient density of filters
or v ‘voices’ per octave. The computation of each voice can be performed in the Fourier domain,
which can be efficiently computed with the fast Fourier transform, requiring O(N log2 N) oper-
ations. The number of scales over which the analysis is performed is at most J = v log2(N/K)

where K is the time support of the wavelet. The complexity of computing the wavelet analysis
of the signal over the entire dilation range is therefore O(JN log2 N) = O(vN(log2 N)2) [22].
A higher value for v captures finer variations in frequency, but incurs greater computational cost.

2.1. Morlet wavelets

There are many choices for mother wavelets; orthogonal basis functions [20] produce a non-
redundant transform for coding and compression applications. However these are unusable for
signal analysis, because they do not preserve the phase of the signal, being translation dependent
[25]. Grossmann and Morlet [21], have applied a complex-valued Gabor mother wavelet for signal
analysis,

g(t) = e−t2/2 × eiω0t , (4)

where ω0 is the frequency of the mother wavelet (before it is scaled). The frequency parameter
ω0 = 6.2 was determined for this application by calibrating, using an isochronous rhythm of
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Journal of Mathematics and Music 85

Figure 1. Time domain plots of Morlet wavelet kernels, showing real and imaginary components for the mother wavelet
and a version dilated by a = 2.

known frequency against the maximum responding scale a for v = 16 voices per octave (see
[18]). In essence, this is a Gaussian window over cosine and sine curves that are in the real and
imaginary planes, respectively (see Figure 1). A Gaussian window function has the property that
it is invariant between time and frequency domains, therefore producing the best simultaneous
localization in both domains with respect to Heisenberg’s uncertainty relation [26, p. 440], [22,
p. 33]: δt × δω ≥ 1/4π .

This led Gabor [27] to propose its use for basis functions that incorporate both time and
frequency. Subsequently, Kronland-Martinet, Morlet and Grossmann [23,28,29] applied such a
wavelet to sound analysis; however, the research reported here (and in [16,17]) differs from their
approach in that it is the rhythm signal (the function that modulates the auditory carrier) that
is analysed using so-called Morlet wavelets—not the entire sound signal. Here the rhythm is
analysed independently (effectively deconvolved from the sound signal) of the auditory carrier
component.

However, the kernel of Equation (4) does not meet the admissibility condition of a zero mean for
exact reconstruction [18,22]. The asymptotic tails of the Gaussian distribution envelope must be
limited in time such that the residual oscillations will produce a non-zero mean. Given that much
analysis can be performed without requiring exact reconstruction, this is not a problem in practice,
particularly to the application of musical rhythm analysis. Likewise, the Gaussian envelope renders
Equation (4) close to a ‘progressive support’ or ‘analytic’ wavelet, nearly satisfying the condition
that ĝ(ω) = 0, ∀ω < 0.

Equations (1) and (4) produce complex valued results and, owing to their analytic nature, the
real and imaginary components are the Hilbert transform of each other. The conservation of energy
of progressive analytical wavelets allows the modulus of a wavelet transform to be interpreted as
an energy density localized in the time/scale half-plane. An analytic (progressive) signal Zs(t) of
s(t) can be defined in polar coordinate terms of modulus As(t) and phase φs(t) as

Zs(t) = As(t)e
iφs(t). (5)

The magnitude and phase of the wavelet coefficients Ws(b, a) can then be plotted on a linear time
axis and logarithmic scale axis as ‘scaleogram’and ‘phaseogram’plots (see for example Figure 5),
first proposed by Grossmann et al. [30]. The discretized version of the phase of the wavelet
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86 L.M. Smith and H. Honing

transform, �(b, a) = arg[Ws(b, a)] (the phasogram), can be recovered owing to the nature of
the near-analytic mother wavelet (Equation 4). Phase values are mapped onto a colour wheel or
grey-scale to visualize the regularity of the progression of phase. To improve clarity, phase values
are clamped to 0, where they correspond to low magnitude values; otherwise, |Ws(b, a)| > εm,
where the magnitude threshold, εm = 0.005, registers the phase measure as valid to display.

2.2. Ridges

A group of researchers (well summarized by [22, Chapter 4]) have used points of stationary
phase derived from wavelet analysis to determine ‘ridges’ that indicate the frequency modulation
function of an acoustic signal. These ridges determine the frequency variations over time of the
fundamental and a finite number of partials. The chief motivation of this research was to reduce
the computation of the transform to only the ridges, collectively termed a ‘skeleton’ [22,31–33].
In that application, the signal analysed was the sampled sound pressure profile.

The motivation here is to extract the frequency modulation function for the purpose of deter-
mining a rhythmic partial that corresponds to the tactus. The skeleton is computed from the
maximum magnitude |Ws |, normalized over scales for each time point b. The peak points
ρ(b, a) = |Ws(b, a)|, with respect to the dilation scale axis a, are found at

∂|Ws(b, a)|
∂a

= 0, when
∂2|Ws(b, a)|

∂a2
< 0. (6)

An implementation to reorder ρ(b, a) into data structures of individual ridges is described in
Section 3.3.

3. A multiresolution time–frequency representation of musical rhythm

3.1. Non-causality

As the time domain plots indicate (Figure 1), the Morlet wavelet is non-causal, running forward
and backward in time. A causal system is one that depends on past and current inputs only, not
future ones [34]. Non-causality implies that the wavelet transformation must be performed on
a recorded copy of the entire signal, and is physically unrealizable in real-time. The wavelet
is therefore considered in terms of an ideal theoretical analysis kernel, summarizing a num-
ber of cognitive processes, rather than one existing in vivo as a listener’s peripheral perceptual
mechanism. However, it should be noted that Kohonen [35] has presented evidence for the self-
organization of Gabor wavelet transforms; so, such representations are not impossible to realize
with a biological system.

However, there are reasons to entertain the idea that the mechanisms used in the process of
rhythm induction are not solely dependent on past information alone. Mere exposure to rhythms
from previous listening has been shown to construct a schema used to aid perception [36]. The use
of temporal context for attentional energy has been argued for rhythm by Jones et al. [9,37], and in
terms of pulse sensations by Parncutt [38]. New rhythms are perceived with respect to previously
heard rhythms and are organized and anticipated within the harness of a particular schematization.
In that sense, the perception of a current beat has an expectancy weighting, projecting from the
present into the future, and a retrospection, projecting from the present back into the past.

A purely causal model will be limited in its success because it does not take into account
the prediction and retrospection possible during a musical performance. Gouyon and Dixon [12]
illustrate the ambiguity of local vs. global tempo changes and timing changes, which can only be
resolved by retrospection. Such timing changes are disambiguated over a span of time that may
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be considered a moving window. For computational approaches, this requires a representation of
a rhythmic schema, which may be considered as abstract structural regularities derived from the
music to which the listener is exposed.

The non-causal projection of the Morlet wavelet can be viewed as an idealistic aggregation
of such predictive memories. Backwards projection of the filter is a model of completion of an
implied rhythm. It functions as retrospective assessment of the rhythm, as argued by Jones and
Boltz [9] and Huron [39]. Its use does not seek to apportion rhythm perception behaviour between
biological and cultural processes. Clearly, the Morlet wavelet is an oversimplification of the rhythm
perception process. Despite the Morlet wavelet being a theoretic formalism, and being a basis for
smooth functions, it has several positive attributes as a representation for rhythm analysis.

3.2. Input representation

The onset impulses are weighted by a measure of the phenomenal importance of each event. This
summarizes the influence from all forms of phenomenal accent that impinges upon the perception
of the event, not only dynamics, and including melodic and harmonic implication. This is denoted
by ι(t) = c(v) × δ(t), where ι(t) is the rhythm function composed of sparse impulse values
(0.0–1.0), and c(v) is the normalized phenomenal accent. Minimally, c(v) is the intensity of the
amplitude of the onset. This is a simplifying assumption that there is a linear relationship between
the perceptual salience of an individual dynamic accent and the intensity of a beat. This ignores the
effect of masking of beats by temporal proximity and other nonlinearities between intensity and
its final perceptual salience. Masking [40], auditory streaming [41], and expectation (for example,
from tonal structure [42] and subjective rhythmization, [4]) can be modelled by a hypothetical
nonlinear transfer function c(v). This would summarize the effect of context on the perceptual
impact of the note. Alternatively, if a frequency representation is used that preserves energy (by
Parseval’s relation [34]), such perceptual effects can be modelled in the frequency domain.

The sampling rate can be low (200 Hz) as the audible frequencies are not present. The multiple
resolution analysis is therefore performed over the frequencies comprising expressively timed
rhythm, spanning from 0.1 to 100 Hz. For analysing human performances, the very shortest scales
(less than four samples, 20 ms) do not need to be computed. Hence, the CWT considers several
time scales, including those commonly referred to as rhythm and expressive timing [5].

The perception of a polyphonic rhythm (comprising different instruments or sound sources) is
assumed to involve segregation into separate simultaneous rhythmic patterns by using common
sound features or changes. Where the listener can interpret a rhythm as comprising multiple
rhythmic lines, rather than variations in accentuation of a single rhythm, this is assumed to
introduce two or more independent rhythms running parallel in time. Furthermore, each is assumed
to be analysed separately by parallel processes.

A clearer model of musical time can be constructed in terms of the time–frequency representa-
tion of rhythm, rather than strictly in the time domain. The invariance of the Gaussian envelope,
between the time and frequency domains of the Morlet wavelet, provides the best simultane-
ous localization of change in time and frequency. Other kernels will achieve better resolution
in one domain at the expense of the other. Arguably, the Morlet wavelet therefore displays the
time–frequency components inherent in a rhythmic signal, prior to the perceptual processes of
the listener. Using such wavelets allows for the quantifying of the representative abilities of other
multiresolution approaches to rhythm models.

The explicit representation of multiple periodicities implied by the temporal structure of events
can be considered as a pulse induction process that forms the pulse percept across an integrating
period. The pulse induction process produces simultaneously ‘attendable’ pulses [9], matching
the concept of multiple hypotheses used in beat tracking systems [43–45], but in the case of the
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88 L.M. Smith and H. Honing

CWT, arising as a direct result of the basis representations (filter impulse responses). This is
demonstrated in Section 4. The top down persistent mental framework process (schema) is then
responsible for selection from the time–frequency plane of one or more ridges that constitute the
most appropriate pulse to which to attend. This is described in Section 3.3.

3.3. Tactus determination

As a minimum demonstration of interpretation of a rhythm, the multiresolution model is used
to determine the tactus. This tactus is verified by using it to compute a beat track to accompany
the original rhythm. The tactus can be considered to function as the carrier in classical frequency
modulation (FM) theory. An isochronous beat is a rhythmic periodicity of a single frequency, and
the performer’s rubato constitutes a frequency modulation of this idealized frequency. In perfor-
mance, the tactus of a rhythm is modulated but still elastically retains semi-periodic behaviour.
A means of extracting the rubato frequency modulation (the ridge) of the tactus is required. The
schematic diagram of Figure 2 describes this process.

Figure 2. Schematic diagram of the multiresolution rhythm interpretation system.
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A process, which can be considered a pulse tracker, extracts the ridge determined to be the
tactus. This tactus ridge is then transformed from the time–frequency plane back to the time
domain, and its phase measure is used to compute the time points of a beat track.

3.3.1. Ridge extraction

Section 2.2 described the process of combining magnitude and phase measures, and of identifying
the peak points ρ(b, a) in the time–frequency plane. These peak points are then grouped by time–
frequency proximity into a skeleton of ridges. The skeleton of ridges is implemented as a list
of Common Lisp objects, each ridge defining its starting location in time and the scale at each
subsequent time point. Representing such ridges as objects (equivalently Minskyian frames) aims
to establish a knowledge framework that bridges the divide between symbolic and sub-symbolic
representations of rhythm. An algorithm to reorder ρ(b, a) into ridges �(b) = a is shown in
Figure 3 and illustrated in Figure 4.

With a tolerance t = 1, this extracts ridges with a rate of change of at most one scale
per time sample. Since the matching is done by scale number a, t = 1 is the minimum. For
t > 1, the algorithm will accept discontinuities between scales of successive time samples
for ridges tracking extremely rapid acceleration or deceleration. In practice however, setting
t > 1 can also lead to the extraction of a single ridge, rather than extracting two closely par-
allel ridges. With sufficiently high time and frequency resolution (a sample rate of 200 Hz and
voices per octave v = 16), t = 1 will track acceleration and deceleration for musical rhythms
correctly.

Such a skeleton represents alternative accompaniment or attending strategies, and is query-able
as such. This representation serves as a foundation to develop, in a modular fashion, alternative
pulse tracking or schematic processes. This is to allow schemas to be developed that decouple
the model of ridge selection (e.g. pulse tracking) from pulse induction. This decoupling seems

Figure 3. Algorithm for the extraction and reordering of peak points ρ in the combined magnitude and phase measures
into ridge structures � ordered by time.
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90 L.M. Smith and H. Honing

Figure 4. Example operation of the ridge extraction algorithm of Figure 3.

necessary in order adequately to model schematic knowledge, which may contradict the veridical
expectancy derived from the surface material. For example, the tactus of a reggae rhythm being
at half time to the quaver (eighth note) pulse.

3.3.2. Ridge selection

The simplest schema process for selecting a ridge as tactus is a heuristic that selects the longest,
lowest frequency ridge that spans the analysis window. In effect, this can be considered the
rhythmic ‘fundamental’ frequency. While such an axiom or principle may seem problematically
reductionist, the heuristic proposed describes a broad behaviour that applies to the entire rhythm.
This indicates that there is an inherent coherence in the temporal structure of the entire rhythmic
sequence analysed. Indeed, the low-frequency components are derived from the contribution of
all events analysed. The selection of such a ridge is shown on the phaseograms of Figures 5 to 8.

Other simple schemas are to establish tempo constraints in choosing a ridge as Parncutt [38]
adopts with 1.38 Hz, and Todd [46] with 2 Hz band-pass filters. More complex schemas can then
be introduced in the future, and compared to this obviously overly simplistic model. The query-
able nature of the skeleton also enables manual selection and testing of ridges for evaluation of
their role as modulated rhythmic strata by using reconstruction.

3.4. Reconstruction of the tactus amplitude modulation

Once the tactus has been extracted from the rhythm, it can be used to compute tap times. When
sampling a tactus that undergoes rubato, it is not sufficient simply to sample the instantaneous
frequency of the tactus ridge owing to the accumulation of error. Therefore, the tactus ridge is
transformed from the time–frequency domain into an FM sinusoidal beat track signal in the time
domain. Only the tactus ridge itself will contribute to the beat track signal. The sinusoidal nature
of the resulting signal causes it to act as an amplitude envelope, i.e. as a rhythm frequency that
modulates over time. This signal is reconstructed from both the scaleogram and phaseogram
coefficients.

All scaleogram coefficents, other than those of the tactus ridge, are clamped to zero, while
the original phase is retained. This altered magnitude and the original phase components are
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Figure 5. An isochronous rhythm (fixed IOI of 1.28 seconds) shown in the top graph as a time-amplitude plot of
impulses, then represented as a scaleogram (magnitude), phaseogram and skeleton of the continuous wavelet transform
coefficients. The most activated ridge (candidate for tactus) is centered on the scale corresponding to an interval of 1.28
seconds and is indicated by the horizontal black line on the phaseogram and highlighted line on the skeleton. A lower
energy ridge is centered on the interval of 0.64 seconds. This secondary ridge occurs from interactions between secondary
lobes of the wavelet.

Figure 6. Time domain plots of the overlap of the real and imaginary components of Morlet wavelet kernels. These
demonstrate the cause of the reduced energy second harmonic in the scaleogram.

converted back to Ws(b, a) coefficients, and reconstructed back to a time domain signal using
Equation (2). The constant cg = 1.7 was determined by calibrating the original time signal
with its reconstruction s(t) to achieve energy conservation. Owing to the asymptotic tails
of the Gaussian, the reconstruction cannot be perfect, but the reconstruction was determined
still accurately to resynthesize the frequency and phase of signals. The real component of the
reconstruction,

As(t) = �[s(t)], (7)
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92 L.M. Smith and H. Honing

Figure 7. Scaleogram and phaseogram plots of an analysis of the score time of the musical cliche [51]. The multiple
periodicities implied by the event times appear as time–frequency ridges. The lowest frequency ridge that extends across
the entire analysis window is indicated on the phaseogram by the black line and is visible as energy on the scaleogram.

Figure 8. Rhythmic impulse function, scaleogram and phaseogram of a performed version of ‘Greensleeves’possessing
expressive timing modulations from the notated rhythm. The varying amplitudes of each beat are indicated by the density
of events at the highest scales on the scaleogram. The tactus of the rhythm (derived using the algorithm described in
Section 3.3) is shown as a black line on the phaseogram.
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reproduces the sinusoid, while �[s(t)] reproduces its analytic counterpart, i.e. phase shifted by
π/2 radians. In addition, the phase of the reconstructed sinusoid can be easily obtained:

φs(t) = arg(�[s(t)], �[s(t)]). (8)

While the peaks of the amplitude modulation (AM) (Equation 7) were verified to produce the
correct beat track points for an isochronous tactus from the pulse (Figure 5), which aligned with the
original rhythm, problems would arise with rhythms that were phase shifted from the occurrence
of an anacrusis. Therefore the φs(t) value was noted for t at the first onset time at which to begin
tapping, and the remaining beat times were selected for each φs(t) that matched that initial phase
value. These beat times were then used to generate note event times with which to synthesize a
beat track that could be mixed with the original rhythm.

This beat track is only synchronized to the original rhythm on one onset, all beats are computed
relative to that first chosen onset. Unless human listeners have an existing memory of the rhythm,
they will not begin clapping from the first beat, so a future research task is to identify the appropriate
first tap beat for each rhythm. Currently, the onset time at which to begin tapping (selecting the
phase of the beat track) is chosen to be the second beat for all rhythms.

4. Rhythm examples

4.1. Isochronous rhythm

The wavelet transform produces short-term, high-frequency basis functions for small values of the
scaling parameter a and long-term, low-frequency versions for large values of a. Short wavelet
basis functions isolate discontinuities in the time domain, while long basis functions analyse with
high discrimination in the frequency domain.

An impulse is localized in time, but infinite in frequency content.A CWT of an impulse localizes
the impulse’s effect in the time domain at the higher-frequency scales (small values of a) and
spreads the effect across longer finite time periods at lower scales. Owing to the non-causality of
the Morlet wavelet, at each scale and translation of Equation (1) the impulse will be projected
simultaneously forward and backward in time in the time–frequency plane, matching the support
of the wavelet.

As detailed in [30,47,48] and [28, p. 279], a singularity such as an impulse will be marked
by a localized increase in the modulus at high frequency scales, and by a constant phase across
frequency scales, independent of the mother wavelet used. An analysis of an isochronous train of
impulses with a bank of dilated Morlet wavelets is shown in Figure 5. The x-axis represents time
in seconds. The y-axis is logarithmic, represented here by the time extent of each wavelet voice,
again in seconds, with a scale resolution of v = 16 voices per octave. This resolution is sufficient
to capture changes in frequency matching expressive timing. For a scale matching 1.28 seconds,
the difference in time extent of one voice is +56/−54 ms.

The scale with the highest modulus represents energy density, and corresponds to the frequency
of the beat. This frequency is the reciprocal of the IOI, as indicated by the horizontal band at 1.28
seconds across the magnitude plot of Figure 5. The timing of the onset intervals between beats
will be reflected by the energized scales. The relative energy levels of each scale are indicated in
Figure 5. In addition to the most highly activated scale corresponding to an IOI of 1.28 seconds,
there is a secondary lobe of half amplitude energy at the first harmonic of the beat rate (0.64
seconds). This is caused by coincidence of the half-amplitude second oscillations of the kernels in
the time domain (see Figure 6, which plots Equation 4 for ω0 = 6.2). The forward time projection
of the nth beat will positively add with backward time projection of the (n + 1)th beat at the first
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and second oscillations of the kernel, producing energy at the first and second harmonic of the
beat rate. These artifacts arise from the Morlet kernel and are dependent on the ω0 value, more
oscillations producing further low-energy harmonics. Therefore a very slight energy at the third
harmonic corresponding to 0.426 seconds can be discerned in the magnitude plot and more so in
the skeleton plot of Figure 5.

While artifactual in nature, these harmonics can be considered as representing a listener’s lower
propensity to perceive an isochronous rhythm as actually being at double the rate of the events.
From another perspective, second and third harmonics from respective rhythms, at half and one
third rates, will contribute to the total signal energy measured at a given rhythmic frequency. This
effect occurs in the Morlet wavelet as a consequence of the nature of the Gaussian envelope of the
Gabor kernel, which is modelling the Heisenberg inequality of time and frequency representation.

This implies that secondary preferences for doubling or, to a lesser extent, tripling a rhythm is
inherent in this model of rhythm, rather than learned. Categorization of rhythmic ratios towards
2:1 in reproduction tasks [4,49,50] does indeed show that these ratios are privileged. Musical
performance practice and other activities involving doubling a motor behaviour are easily accom-
plished by humans. That practice is reflected in the ubiquity of duple and triple representations in
musical notation of rhythm. It is quite possible that this motor production optimization is matched
by an inherent perceptual process favouring simple subdivisions of time.

4.2. Non-isochronous rhythm

The representation of a typical musical rhythm is shown in Figure 7. The resolution of the CWT
makes the short-term frequencies of the rhythm apparent. Scales are reinforced from time inter-
vals that overlap, and fade where onsets no longer contribute impulsive energy. This produces a
set of simultaneous ridges in the scaleogram as the rhythm progresses across time, and creates
different intersecting intervals. The most highly activated ridges are the ones that receive most
reinforcing contributions from re-occurring intervals. The phase diagram illustrates the pres-
ence of periodicities at individual scales by the steady progression of phase (i.e. the spectrum)
across time.

The impulse signal is padded with repetitions of the signal up to the next dyadic length to
account for edge conditions so that the last interval is part of the analysed signal. Therefore the
entire signal is analysed in the context of its being repeated. This does not compromise the time–
frequency resolution of the CWT, since signals are not assumed to be periodic within the analysis
window, as is the case for a Fourier representation. An alternative representation is to pad the
analysed signal with silence on both ends. This has minimal impact on representations of onsets
within the signal, but reduces the contribution of the first and last beats.

Further examples of analyses of rhythms are demonstrated in online Supplement 2.

4.3. A performed rhythm: Greensleeves

Figure 8 demonstrates the CWT applied to a performed version of a well-known rhythm exam-
ple with multiple IOIs grouped in musically typical proportions. The rhythm timing is obtained
from a performance played by tapping the rhythm on a single MIDI drum-pad. The scaleogram
and phaseogram indicate the hierarchy of frequencies implied at each time point owing to the
intervals between notes falling within each scaled kernel’s support. Repeated rhythmic figures,
such as the shortened semi-quaver (sixteenth note) followed by a crochet (quarter note), pro-
duces energy ridges starting at 1.74, 3.6, 9.07 and 10.91 seconds in the scaleogram. These and
other timing characteristics produce temporal structure that is revealed in the lower-frequency
scales. The phaseogram in Figure 8 indicates higher-frequency periodicities, and the enduring
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Figure 9. This diagram demonstrates beat tracking to the tactus of the performance of ‘Greensleeves’ analysed in
Figure 8. The original time-points of the notes of the rhythm are shown, together with the reconstructed phase φs(t) and
the computed beat track determined from phase-locking to the second note, the nominated event to begin tapping to. In
this diagram the computed beat track is artificially scaled to a value of 1.2, and the phase (0.0–1.0) to improve readability.
Available in colour online.

lower-frequency periodicity with an IOI mostly around 0.91 seconds nominated as the tactus (see
Section 3.3). The original rhythm, the computed beat track, and the reconstructed phase φs(t) of
Equation (8) are displayed in Figure 9.

5. Conclusion

This paper proposes and demonstrates phase-preserving Morlet wavelets as a means of analysing
musical rhythm by revealing the rhythmic strata implicit in a rhythmic signal. The transform repre-
sents the rhythmic effects generated by dynamic and temporal accents in establishing hierarchies
of rhythmic frequencies. Such a hierarchical representation bears similarities with the metrical
and grouping structure theory of Lerdahl and Jackendoff [8]. It does not require explicit generative
rules to produce such an interpretation. Hence the proposed method examines the information
contained within a musical rhythm before any perceptual or cognitive processing is performed.
This method attempts to make explicit the structure inherent in a rhythm signal. It can be viewed
as a formalization of rhythmic decomposition.

In addition, the preservation of energy, and therefore invertability of the CWT (Section 2.1),
enables cognitive models to be built in the time–frequency domain, as an alternative to purely
time domain models. This allows representations to be built that directly address the change over
time that musical rhythm undergoes. The degree to which the time–frequency ridges produced by
this model matches human cognition suggests the degree to which musical rhythm is an example
of emergent cognition, arising from mechanisms that attune to features of environmental stimuli.
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96 L.M. Smith and H. Honing

Nevertheless, the system still has a number of limitations. The heuristic of choosing a tactus on
the basis of the lowest frequency and longest time extent ridge is obviously simplistic. However,
it does demonstrate that the CWT can identify the tactus as a time–frequency ridge. Work is
currently underway to improve the tactus selection method to include sensitivity to phase and
global tempo. Further work is also required to extend the tactus selection to one that is determined
by exposure to a musical environment, and to verify this approach with a large test set that uses a
wide range of musical rhythms. A systematic evaluation is currently underway to determine the
limits of rhythmic signals that can be represented. Finally, the non-causal implementation of the
method currently prevents a direct online application, and the frequency resolution used produces
a relatively high computational burden.

Despite these current issues, we think the multiresolution analysis model contributes to an
understanding of how much information can be obtained from the rhythmic signal itself, including
both categorical (temporal structure) and continuous (expressive timing) information. Since it does
not use additional ‘top-down’modelling, it may serve as a baseline for cognitive models of rhythm
perception.
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1. Previous work in rhythm representation

Considerable research has been directed at designing models of both pulse induction and at
tracking processes, towards the final goal of producing useful and robust models of musical time.
Existing models have used various approaches including grammars [1,2], expectancy [3], statistics
[4,5], Minskyian agents [6], oscillator entrainment [7,8] and other self-organising connectionist
systems [9–11]. A recent review of rhythm description systems is provided by Gouyon and Dixon
[12]. Common problems confronted and addressed in a diverse manner by these approaches are
the representation of temporal context, order and hierarchy, and the role of expressive timing and
tempo within the existing rhythmic structure.

Since musical rhythm can be induced from clicks alone, a rhythmic function for analysis is
created by representing the time of each onset as a unit impulse function. The rhythm function for
a piece of music is therefore a train of impulses with intervals matching the IOI between onsets.
A pulse-train function can be seen to be a minimal or critical sampling of the auditory amplitude
envelope at the lowest sampling frequency which still accurately represents the rhythm function.
This yields one sample at the point in time at which each musical event becomes audible to the
listener. This is an onset-based representation of rhythm, and is typically recovered by a detection
algorithm operating on the energy of the acoustic signal, |y|2. This is effectively a rectification of
the audio signal in order to deconvolve the amplitude envelope from the auditory carrier signal
[13,14].Alternatively the onset times are obtained by transducing a musicians actions on a sensing
instrument (e.g., MIDI). This is distinguished by Gouyon and Dixon [12] from a time domain
frame-based system which aims to determine the rhythmic signal directly from the auditory
signal. However, in practice, systems directly processing the audio signal must rectify it in order
to deconvolve the rhythm before further processing.

The explicit treatment of a rhythm as a signal, applicable to digital signal processing methods,
has only recently become widely adopted as a computational approach to rhythm perception.
Notable early examples have been the use of autocorrelation methods by Desain and de Vos [15]
and Brown [16] to detect periodicities in MIDI data and audio recordings, respectively. Goto
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2 L.M. Smith and H. Honing

and Muraoka [17] developed a beat tracking system capable of processing musical audio in real
time. Their system manages multiple hypotheses created by beat prediction agents. These agents
track “onset time finders” which operate on spectral energy representations. The frequency and
sensitivity parameters of the onset time finders are tuned by the agents. Domain knowledge is
used to pattern match against characteristic spectral features (snare and bass drums) and typical
popular music rhythms (strong-weak-strong-weak repetition). Beat intervals are determined by
interval histograms weighted by reliability of tracking estimates. As the authors admit, the system
makes strong assumptions on the music to be tracked, such as popular songs in 4

4 and constrained
tempo range and variability.

Formalising the dynamic attending model of Jones and Boltz [18], Jones and Large [8] have
developed a model based on coupled self-oscillating “attending rhythms” that entrain to external
(performed) rhythms. Phase and period (frequency) coupling of the attending rhythm to the
external rhythm enable variations in the timing of the external rhythm to be tracked. Internal
coupling between oscillators is designed to pull pairs into a 2:1 phase-locked relationship. The
model relies on an attentional focus period during each attentional rhythm’s oscillation that creates
a period of enhanced responsiveness (“attentional targetting” or a “temporal responsive field”
[19, p. 80]) to strengthen the coupling. The period of focus narrows with repetition, responding
to onsets which are expected to fall within this attended period. Conversely, onsets which fall at
half periods (twice the rate) lie outside the attentional focus. Hence, the model is insensitive to
change at these points in time [19]. In the model described in this article, to begin to track an
external rhythm which then changes to double time, a new oscillator must begin tracking, starting
from a wide attentional focus, or the currently attending rhythm must adapt to this new double
rate rhythm. The dynamics of each oscillator form a time and frequency varying filter which can
adapt to timing variations from the musical rhythm.

Scheirer [14] demonstrated that the sum of the amplitude envelopes of a bank of subbands is
sufficient to induce a rhythmic percept that matches the original musical signal. His model uses a
six band filter bank to attempt to separate polyphonic input by frequency bin. This assumes that
any polyphony occurring within that frequency band will not be rhythmicly contradictory (i.e.,
play in polyrhythm). The band-pass “envelope channel” output is rectified, smoothed, differen-
tiated and then half-wave rectified in order to sharpen the amplitude envelope of the sub-band
to an approximation of an onset signal. This produces impulsive energy to a causal resonant
comb filter bank which resonates at the periodicity of the sub-band. The comb filters only res-
onate with onsets at periods matching their delay times; a sufficient number of resonators is
required to track tempo deviations in real time. Therefore, Scheirer’s tests must be applied to
music that exhibits a “strong beat”.

In a similar fashion, Sethares and Staley [14] used a signal decomposition method that extracts
strictly periodic components from the RMS energy of audio sub-bands. They select basis elements
according to several different criteria, including the best correlation of the elements to the sub-
band signal. As the authors note, “When the tempo of the performance is unsteady, the periodicity
methods fail, highlighting the methods’ reliance on a steady underlying pulse” [20, p. 152]. Such
“unsteady” tempo includes musically essential gestures such as ritardando and accelerando; so,
this approach and Scheirer’s seems to be limited in their applicability for music that exhibits such
expressive timing.

Klapuri et al. [21] generalises the preprocessing of the audio signal of Scheirer [14] and Goto
and Muraoka [17] to produce many sub-bands which are then summed to a subset of four channels,
termed “accent signals”. These accent signals are then subject to periodicity detection. This is
performed by a bank of comb filter resonators (matching Scheirer’s) whose output are summed to a
single measure of current periodicities. Three hidden Markov models form a probabilistic model to
estimate the periods and phases of the tactus, bar, and shortest rhythmic interval (“tatum”) from
the summed and individual resonator energies, respectively. While described probabilistically,
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the periods and phase probabilities are not determined by training, they are derived from features
chosen by hand, estimated to have a proportional influence. Phase of the bar is chosen by pattern
matching against two expected energy time profiles derived by inspection. Using such an approach
outperforms two reference systems, Scheirer [14] and Dixon [22], although pieces which exhibit
substantial expressive timing were not tested.

Modelling tempo tracking as a stochastic dynamical system, Cemgil et al. [23] represent tempo
as a hidden state variable estimated by Kalman filtering. They model tempo as a strict periodicity
with an additional noise term that describes expressive timing as a Gaussian distribution. The
Kalman filter uses a multiscale representation of a real performance, the “tempogram”. This is
used to provide a Bayesian estimation of the likelihood of a local tempo given a small set of
onsets. The tempogram is calculated by convolving onset impulses with a Gaussian function,
which is then decomposed onto multiscale basis functions. These bases are similar to Scheirer’s
comb filters, forming a local constant tempo that is used to match against the incoming rhythm.
By considering rhythm as locally constant, and timing deviations as noise, the system does not
take advantage of the underlying structure of a performer’s expressive timing.

Todd [13] applied banks of Mexican hat filters, analogous to the primal sketch theory of human
vision [24], towards an auditory primal sketch of rhythm. This produces a “rhythmogram” rep-
resentation of an audio signal. A recent publication by Todd [25] postulates a rhythm perception
model based in the auditory periphery and controlling directly the musculoskeletal system. While
such a neurobiologically inspired model may be plausible, it is difficult to measure the contribution
of each component of the model against a base-line. For example, the performance of a model may
be due to its accurate representation of neurobiology, or alternatively mostly due to the behaviour
of the signal processing systems incorporated therein. A model that attempts to relate directly to
components of the human auditory periphery may not provide the simplest explanation for the
output, making verification difficult. Given the massive connectionism present in neurobiology, a
model may not reflect neurological architecture in a sufficient manner to produce accurate results,
or be simply too computationally expensive to test thoroughly.

The use of the continuous wavelet transform as a means of analysing rhythms consisting of
an impulse train of onsets was originally reported in Smith [26] and Smith and Kovesi [27]. The
output of the transform is similar to Todd’s rhythmogram, but more detailed. The representation
reveals a hierarchy of rhythmic strata and the time of events by using a wavelet that has the best
combined frequency and time resolution. Such bottom-up data-oriented approaches, including the
multiresolution method described in this paper, do not fully account for human rhythm cognition.
Rhythm perception is additionally influenced in a top-down manner by the listener’s memory,
developed by a combination of explicit training and learning through exposure. A goal of this
paper is to clarify the information which is inherent (i.e., retrievable) in the temporal structure
of a musical rhythm. This aims to establish a base-line measure to evaluate the contribution of
different models of musical time before considering the effect of top-down processing. In short,
the intention of this paper is to demonstrate how much structure can be retrieved from a sparse
impulse representation of a rhythmic signal.
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1. Dynamic accents

Figure 1 illustrates an analysis of a rhythm composed of a meter changing from an intensified
beat every three beats to an accent every four beats and then returning to every three beats.
The IOI’s remain equal across the pulse train; only the beat which is intensified is changed. As
can be seen, a band of frequency scales corresponding to the interval between accented beats
is established during the 3

4 meter period, dips downwards for the 4
4, and returns to the previous

scale. This demonstrates the zooming of the multiresolution model, and its ability to track a short
term change in frequency. The phaseogram in Figure 1 indicates congruence over ranges of scales
corresponding to the rhythmic band. Additionally, the phase highlights the points of change in
the signal, where a frequency (meter) change occurs. The non-causal nature of the convolution
operator used in the continuous wavelet transform (CWT) pin-points the rhythmic alternation.

2. Timing

A key feature of the CWT representation is that this pulse induction process can identify a time
modulated (retarding/accelerating) rhythmic pulse. It does not require pulses to be isochronous
and can therefore avoid representing local deviations in rhythmic frequency as “noise”. As a
demonstration, two scaleograms of rhythms are displayed in Figures 2 and 3. Both analyse the
same number of events, all impulses are equal in amplitude and the size of deviations in expressive
timing are also equal. The variations in the grouping, in four (Figure 2) and in three (Figure 3), are
made visible by the multiresolution representation. The multiple timescales reflect the different
arrangement of the timing groups, and the periodicity of these groups appears as a low energy
(but still visible and detectable) ridge. The ability to discriminate quasi-periodicity means that
grouping from expressive timing that is not strictly periodic can also be represented. However, this
timing shift is subtle, when supported only by timing accentuation alone. Co-occurring dynamic
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2 L.M. Smith and H. Honing

Figure 1. An isochronous rhythm changing in meter by variations in amplitude. The upper plot shows the impulse
amplitudes, with the meter changing from 3

4 to 4
4 over the period of 4.2 to 11.2 seconds. The scaleogram (middle) and

phaseogram (lower) plots display a continuous wavelet transform of the rhythmic impulse function. The intensity variations
of the impulses are discernable in the scaleogram at short IOI scales, and the time-frequency ridge with the most energy is
at 0.35 seconds matching the IOI. A lower energy ridge is visible on the scaleogram, and more clearly on the phaseogram,
changing in its period from 1.05 seconds to 1.4 seconds matching the duration of the bar. It is marked on the phaseogram
as a black line.

Figure 2. A rhythm that has a repeating IOI pattern of 0.305, 0.375, 0.375, 0.445 seconds. The period of the pattern
(1.5 seconds) is shown on the scaleogram and is marked on the phaseogram as a black line.
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Figure 3. A rhythm that has a repeating IOI pattern of 0.305, 0.375, 0.445 seconds. The slight timing variation differences
between this rhythm and that shown in Figure 2 are indicated in the different patterns of the high frequency scales, while
a low energy ridge at the lower frequency scales matching the different periods (1.125 seconds and 1.5, respectively) of
the repeated patterns is visible on the magnitude diagram, and is plotted on the phase diagram.

accentuation would make the grouping more apparent to the listener and in the scaleogram. Such
accentuation is reflected by the CWT, as demonstrated in Figure 1.
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